Core Config’n Properties

Table of Contents

1. Configuration Properties
1.1. Other Guides
2. Deployment Types
2.1. Using the Wicket Viewer
2.2. Restful Objects viewer only
2.3. Overriding the deployment type
3. Configuration Files
4. Specifying components
4.1. Viewer Configuration
5. Configuring Core
5.1. Domain Events
5.2. Lifecycle Events
5.3. UI Events
5.4. Services
5.5. MetaModel Introspection
5.6. MetaModel Validation
5.7. UI Facet Config Properties
5.8. Programming Model
5.9. Policy

© 00 00 00 ~J O Ul = b W W = =

g Y
0 g9 oo W N o

Chapter 1. Configuration Properties

Apache Isis' own configuration properties are simple key-value pairs, typically held in the
WEBINF/isis.properties file and other related files. This guide describes how to configure an Apache
Isis application.

This guide covers only the core configuration properties (relating to Apache Isis'
metamodel and runtime management). Configuration properties for the viewers

0 can be found in the Wicket Viewer guide and the RestfulObjects viewer guide.
Likewise details of configuring security (Apache Shiro) can be found in the
Security guide, and details for configuring the DataNucleus Object Store can be
found in the DataNucleus guide.

By default the configuration values are part of the built WAR file. Details on how to
Q override these configuration properties externally for different environments can
be found in the Beyond the Basics guide, (deployment chapter).

1.1. Other Guides

Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures” guides.

The user guides available are:

* Fundamentals

e Wicket viewer

Restful Objects viewer
» DataNucleus object store
 Security

» Testing

Beyond the Basics
The reference guides are:

* Annotations

* Domain Services

* Configuration Properties (this guide)
¢ Classes, Methods and Schema

* Apache Isis Maven plugin

¢ Framework Internal Services

The remaining guides are:

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugsec/ugsec.pdf
../ugodn/ugodn.pdf
../ugbtb/ugbtb.pdf#_ugbtb_deployment
../ugfun/ugfun.pdf
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugodn/ugodn.pdf
../ugsec/ugsec.pdf
../ugtst/ugtst.pdf
../ugbtb/ugbtb.pdf
../rgant/rgant.pdf
../rgsvc/rgsvc.pdf
../rgcfg/rgcfg.pdf
../rgcms/rgcms.pdf
../rgmvn/rgmvn.pdf
../rgfis/rgfis.pdf

* Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

* Committers' Guide (release procedures and related practices)

../dg/dg.pdf
../cgcom/cgcom.pdf

Chapter 2. Deployment Types

Apache Isis distinguishes between the application being run in development mode vs running in
production mode. The framework calls this the "deployment type" (corresponding internally to the
DeploymentType class).

(For mostly historical reasons) development mode is actually called SERVER_PROTOTYPE, while
production mode is called just SERVER. (There is also a deprecated mode called SERVER_EXPLORATION;
for all intents and purposes this can considered as an alias of SERVER_PROTOTYPE).

When running in development/prototyping mode, certain capabilities are enabled; most notably
any actions restricted to prototyping mode (using @Action#irestrictTo()) will be available.

2.1. Using the Wicket Viewer

Most of the you’re likely to run Apache Isis using the Wicket viewer. In this case Apache Isis'
"deployment type" concept maps to Wicket’s "configuration” concept:

Table 1. Apache Isis' deployment type corresponds to Apache Wicket’s configuration

Apache Isis Apache Wicket Notes

(Deployment Type) (Configuration)

SERVER_PROTOTYPE development running in development/prototyping mode
SERVER deployment running in production mode

Wicket’s mechanism for specifying the "configuration" is to use a context parameter in web.xml;
Apache Isis automatically infers its own deployment type from this. In other words:

* to specify SERVER (production) mode, use:

web.xml

<context-param>
<param-name>configuration</param-name>
<param-value>deployment</param-value>
</context-param>

* to specify SERVER_PROTOTYPING (development) mode, use:

web.xml

<context-param>
<param-name>configuration</param-name>
<param-value>development</param-value>
</context-param>

../rgant/rgant.pdf#_rgant-Action_restrictTo
../ugvw/ugvw.pdf

2.2. Restful Objects viewer only

Most Apache Isis applications will consist of at least the Wicket viewer and optionally the
RestfulObjects viewer. When both viewers are deployed in the same app, then the bootstrapping is
performed by Wicket, and so the deployment type is configured as described in the previous
section.

In some cases though you may be using Apache Isis to provide a REST API only, that is, you won’t
have deployed the Wicket viewer. In these cases your app will be bootstrapped using Apache Isis'
IsisWebAppBootstrapper.

In this case the deployment type is specified through an Apache Isis-specific context parameter,
called isis.deploymentType:

* to specify SERVER (production) mode, use:

web.xml

<context-param>
<param-name>isis.deploymentType</param-name>
<param-value>server</param-value>
</context-param>

* to specify SERVER_PROTOTYPE (development) mode, use:

web. xml
<context-param>
<param-name>isis.deploymentType</param-name>

<param-value>server-prototype</param-value>
</context-param>

2.3. Overriding the deployment type

If bootstrapping the application using Apache Isis' org.apache.isis.WebServer then it is possible to
override the deployment type using the -t (or --type) flag.

For example:
java -jar ... org.apache.isis.WebServer -t SERVER

where "..." is the (usually rather long) list of JAR files and class directories that will make up your
application.

This works for both the Wicket viewer and the RestfulObjects viewer.

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugbtb/ugbtb.pdf#__ugbtb_web-xml_servlet-context-listeners
../ugbtb/ugbtb.pdf#__ugbtb_web-xml_servlet-context-listeners
../ugbtb/ugbtb.pdf#_ugbtb_deployment_cmd-line
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf

Chapter 3. Configuration Files

When running an Apache Isis webapp, configuration properties are read from configuration files
held in the WEB-INF directory.

The WEBINF/isis.properties file is always read and must exist.

In addition, the following other properties are searched for and if present also read:

viewer_wicket.properties - if the Wicket viewer is in use

viewer_restfulobjects.properties - if the RestfulObjects viewer is in use

viewer.properties - for any other viewer configuration (but there are none currently)
persistor_datanucleus.properties - assuming the JDO/DataNucleus objectstore is in use
persistor.properties - for any other objectstore configuration.

This typically is used to hold JDBC URLs, which is arguably a slight violation of the file (because
there’s nothing in Apache Isis to say that persistors have to use JDBC. However, it is generally

convenient to put these JDBC settings into a single location. If you want, they could reside inin
any of persistor_datanucleus.properties, persistor.properties or (even) isis.properties

authentication_shiro.properties, authorization_shiro.properties

assuming the Shiro Security is in use (but there are no security-related config properties
currently; use shiro.ini for Shiro config)

authentication.properties, authorization.properties

for any other security-related config properties (but there are none currently).

You can if you wish simply store all properties in the isis.properties file; but we think that
breaking properties out into sections is preferable.

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf

Chapter 4. Specifying components

Bootstrapping an Apache Isis application involves identifying both:

* the major components (authentication, persistence mechanisms, viewers) of Apache Isis, and
also

* specifying the domain services and persistent entities that make up the application itself.

The recommended approach is to use an AppManifest, specified either programmatically or through
the configuration properties. This allows the components, services and entities to be specified from
a single class.

To specify the AppManifest as a configuration property, use:

Table 2. Core Configuration Properties (ignored if isis.appManifest is present)

Property Value Implements
(default value)
isis.appManifest FQCN 0.a.i.applib.AppManifest

By convention this implementation resides in an
myapp-app Maven module (as opposed to myapp-
dom or myapp-fixture). See the SimpleApp
archetype for details.

From this the framework can determine the domain services, persistent entities and security
(authentication and authorization) mechanisms to use. Other configuration (including fixtures) can
also be specified this way.

In the AppManifest itself, there are two methods which specify how authentication and

authorisation are configured:

public interface AppManifest {

String getAuthenticationMechanism();
String getAuthorizationMechanism();

These can return either:

 "shiro" - enable integration with Apache Shiro, as described in the security user guide
» "bypass" - bypass security (in effect, configure a no-op implementation that allows everything).
Note that these are actually aliases for concrete implementations. It is also possible to specify a fully

qualified class name to replace either of the two security components, implementing the
appropriate interface.

../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest
../ugfun/ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
../ugfun/ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
../ugsec/ugsec.pdf

4.1. Viewer Configuration

Viewers are specified by way of the filters and servlets in the web.xml file; these are not
bootstrapped by the framework, rather it is the other way around.

../ugbtb/ugbtb.pdf#_ugbtb_web-xml

Chapter 5. Configuring Core

This section lists the core/runtime configuration properties recognized by Apache Isis.

Configuration properties for the JDO/DataNucleus objectstore can be found in the

ﬂ Configuring DataNucleus section later in this chapter, while configuration
properties for the viewers can be found in the their respective chapters, here for
Wicket viewer, and here for the Restful Objects viewer.

5.1. Domain Events

Table 3. Core Configuration Properties for Domain Events

Property Value Description

(default

value)
isis.reflector.facet. true,false Whether an event should be posted if
actionAnnotation. (true) @Action#domainEvent() is not specified (is set to
domainEvent.postForDefault ActionDomainEvent.Default).
isis.reflector.facet. true,false Whether an event should be posted if
collectionAnnotation. (true) @Collection#domainEvent() is not specified (is set
domainEvent.postForDefault to CollectionDomainEvent.Default).
isis.reflector.facet. true,false Whether an event should be posted if
propertyAnnotation. (true) @Property#domainEvent() is not specified (is set to
domainEvent.postForDefault PropertyDomainEvent.Default).

In order for these events to fire the action/collection/propert must, at least, be
Q configured with the relevant annotation (even if no attributes on that annotation
are set).

5.2. Lifecycle Events

Table 4. Core Configuration Properties for Lifecycle Events

Property Value Description

(default

value)
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @lomainObject#icreatedLifecycleEvent() is not
createdlLifecycleEvent. specified (is set to ObjectCreatedEvent.Default).
postForDefault

../ugodn/ugodn.pdf#_ugodn_configuring
../ugvw/ugvw.pdf#_ugvw_configuration-properties
../ugvw/ugvw.pdf#_ugvw_configuration-properties
../ugvro/ugvro.pdf#_ugvro_configuration-properties
../rgant/rgant.pdf#_rgant-Action_domainEvent
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Property_domainEvent
../rgant/rgant.pdf#_rgant-DomainObject_createdLifecycleEvent

Property Value Description
(default
value)

isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#loadedLifecycleEvent() is not
loadedLifecycleEvent. specified (is set to ObjectLoadedEvent.Default).
postForDefault
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#persistinglifecycleEvent() is not
persistinglLifecycleEvent. specified (is set to
postForDefault ObjectPersistingEvent.Default).
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#persistedLifecycleEvent() is not
persistedLifecycleEvent. specified (is set to
postForDefault ObjectPersistedEvent.Default).
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#removinglLifecycleEvent() is not
removinglLifecycleEvent. specified (is set to ObjectRemovingEvent.Default).
postForDefault
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#updatinglLifecycleEvent() is not
updatinglLifecycleEvent. specified (is set to ObjectUpdatingEvent.Default).
postForDefault
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#updatedLifecycleEvent() is not
updatedLifecycleEvent. specified (is set to ObjectUpdatedEvent.Default).
postForDefault

Q In order for these events to fire the class must be annotated using @DomainObject

(even if no attributes on that annotation are set).

5.3. UI Events

Table 5. Core Configuration Properties for UI Events

../rgant/rgant.pdf#_rgant-DomainObject_loadedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_persistingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_persistedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_removingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatedLifecycleEvent

Property

isis.reflecto

Value
(default
value)

r.facet. true,false

domainObjectLayoutAnnotation. (true)
cssClassUiEvent.postForDefault

isis.reflecto

r.facet. true,false

domainObjectLayoutAnnotation. (true)
iconUiEvent.postForDefault

isis.reflecto

r.facet. true,false

domainObjectLayoutAnnotation. (true)
titleUiEvent.postForDefault

v

In order for these events to

Description

Whether an event should be posted if
@DomainObjectLayout#icssClassUiEvent() is not
specified (is set to CssClassUiEvent.Default).

Whether an event should be posted if
@DomainObjectLayout#iconUiEvent() is not
specified (is set to IconUiEvent.Default).

Whether an event should be posted if
@omainObjectLayout#ititleUiEvent() is not
specified (is set to TitleUiEvent.Default).

fire the class must be annotated using

@DomainObjectLayout (even if no attributes on that annotation are set).

5.4. Services

Table 6. Core Configuration Properties for Services

Property

isis.services

isis.services.

audit.
objects

isis.services.

command.
actions

10

Value
(default
value)

FQCN,FQCN2,...

all, none
(all)

all, ignoreSafe,
none (none)

Description

NO LONGER REQUIRED; replaced by
AppManifest.

(It used to define the list of fully qualified class
names of classes to be instantiated as domain
services; this is now inferred from the list of
modules provided to the app manifest).

Whether the changed properties of objects
should be automatically audited (for objects

annotated with
@DomainObject(auditing=Auditing.AS_CONFIGURED)

Whether action invocations should be
automatically reified into commands (for

actions annotated with
@Action(command=CommandReification.AS_CONFIGUR

ED).

ignoreQueryOnly is an alias for ignoreSafe.

../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassUiEvent
../rgant/rgant.pdf#_rgant-DomainObjectLayout_iconUiEvent
../rgant/rgant.pdf#_rgant-DomainObjectLayout_titleUiEvent
../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest
../rgant/rgant.pdf#_rgant-DomainObject_auditing
../rgant/rgant.pdf#_rgant-Action_command
../rgant/rgant.pdf#_rgant-Action_command

Property

isis.services.

command.
properties

isis.services.

injector.
injectPrefix

isis.services.

injector.
setPrefix

isis.services.

publish.
objects

isis.services.

publish.
actions

isis.services.

publish.
properties

isis.services.
ServicesInstaller
FromAnnotation.

packagePrefix

Value
(default
value)

all, none (none)

true,false
(false)

true,false
(true)

all, none
(all)

all, ignoreSafe,
none (none)

all, none (none)

fully qualified

package names

(CSV)

Description

(Whether property edits should be
automatically reified into commands (for

properties annotated with
@Property(command=CommandReification.AS_CONFIG

URED).

(Whether the framework should support
inject=:() as a prefix for injecting domain
services into other domain objects.

+ By default this is disabled. This can help
reduce application start-up times.

Whether the framework should support set--()
as a prefix for injecting domain services into
other domain objects.

+ By default this is enabled (no change in
1.13.0). If the setting is changed to disabled then
this may reduce application start-up times.

Whether changed objects should Dbe
automatically published (for objects annotated
with
@omainObject(publishing=Publishing.AS_CONFIGU
RED).

Whether actions should be automatically
published (for actions annotated with
@Action(publishing=Publishing.AS_CONFIGURED).

Whether properties should be automatically

published (for properties annotated with
@Property(publishing=Publishing.AS_CONFIGURED)

NO LONGER REQUIRED; replaced by
AppManifest.

(It used to define the list of packages to search
for domain services; ; this is now inferred from
the list of modules provided to the app
manifest).

11

../rgant/rgant.pdf#_rgant-Property_command
../rgant/rgant.pdf#_rgant-Property_command
../rgant/rgant.pdf#_rgant-DomainObject_publishing
../rgant/rgant.pdf#_rgant-DomainObject_publishing
../rgant/rgant.pdf#_rgant-Action_publishing
../rgant/rgant.pdf#_rgant-Action_publishing
../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest

5.5. MetaModel Introspection

Table 7. Metamodel Introspection

Property Value Description
(default
value)
isis.reflector.introspect. true,false Whether to build the metamodel in parallel
parallelize (true) (with multiple threads) or in serial (using a
single thread).

In general, parallelisation should result in faster
bootstrap times.

isis.reflector.introspect. lazy,lazy_unles How complete to build the metamodel during

mode s_production,fu hootstrapping.
11

(lazy_unless_pr Setting to lazy In general, parallelisation should
oduction) result in faster bootstrap times. This is discussed
further below.

o Metamodel validation is only
done after full introspection.

5.5.1. Lazy vs Full introspection.

The framework performs classpath scanning to identify all domain classes (domain services,
mixins, entities, view models and fixture scripts), and the class-level facets for all of these are
always created during bootstrapping.

In addition, the members for all domain services and mixins are also created, because these can
give rise to contributed members of the entities/view models.

Lazy introspection means that the class members (properties, collections and actions) and their
respective facets are not created for all of the entities/view models in the domain model. Instead
these are created only on first access. The purpose of this is primarily to speed up bootstrapping
during development.

To enable lazy introspection, either set the isis.reflector.introspect.mode configuration property
to "lazy" or to "lazy_unless_production” (the latter only if also running with a deployment type of
"production").

However, the trade-off is that metamodel validation is not performed in lazy mode.
Note that integration tests are run in production mode, and so by default these

perform full introspection. This can be overridden when calling the superclass
(IntegrationTestAbstract3)'s contributor with IntrospectionMode.LAZY.

12

5.6. MetaModel Validation

if full

Metamodel validation

only done

introspection is configured, see the

isis.reflector.introspect.mode configuration property.

Table 8. Metamodel Validation

Property

isis.reflector.validator

isis.reflector.validator.

actionCollection
ParameterChoices

isis.reflector.validator.

allowDeprecated

isis.reflector.validator.

checkModuleExtent

isis.reflector.validator.

ensureUniqueObjectTypes

Value
(default
value)

FQCN

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

Description

Custom implementation of MetaModelValidator

(in the
org.apache.isis.core.metamodel.specloader.vali

dator package)

See Custom Validator to learn more.

Whether to check that -collection action
parameters have a corresponding choices or
autoComplete facet.

In the current implementation such a facet is
always required, so this configuration option
has only been introduced as a feature flag in
case it needs to be disabled for some reason.

Whether deprecated annotations or naming
conventions are tolerated or not. If not, then a
metamodel validation error will be triggered,
meaning the app won’t boot (fail-fast).

See also
isis.reflector.facets.ignoreDeprecated.

Whether to check that all domain objects
discovered reside under the top-level module of
the app manifest.

Note that the application must be bootstrapped
using an AppManifest2.

Whether to ensure that all classes in the
metamodel map to a different object type
(typically either as explicitly specified using
@omainObject(objectType=--+), or their class
name as a fallback).

13

../ugbtb/ugbtb.pdf#_ugbtb_programming-model_custom-validator

Property

isis.reflector.validator.
explicitObjectType

isis.reflector.validator.
jaxbViewModel
NotAbstract

isis.reflector.validator.
jaxbViewModel
NotInnerClass

isis.reflector.validator.
jaxbViewModel
NoArgConstructor

isis.reflector.validator.
jaxbViewModel
ReferenceTypeAdapter

14

Value
(default
value)

true,false
(false)

true,false
(true)

true,false
(true)

true,false
(false)

true,false
(true)

Description

Whether to check that the class has an object
type explicitly specified somehow.

The object type is used by the framework as an
alias for the object’s concrete class; it is one part
of the object’s OID and can be seen in the URLs
of the Wicket viewer and Restful Objects viewer,
and is encoded in the Bookmarks returned by the
BookmarkService. In this was it may also be
persisted, for example in polymorphic
associations or command or auditing tables.

If the object type is not specified explicitly, then
this can cause data migration issues if the class
is subsequently refactored (eg renamed, or
moved to a different package).

This configuration property can be used to
enforce a rule that the object type must always
be specified (for persistent entities and view
models).

Ensures that all JAXB view models are not
abstract (so can be instantiated).

Ensures that all JAXB view models are not inner
classes (so can be instantiated).

Ensures that all JAXB view models have a public
no-arg constructor.

This isn’t actually required (hence not enabled
by default) but is arguably good practice.

Ensures that for all JAXB view models with
properties that reference persistent entities, that
those entities are annotated with
@XmlJavaTypeAdapter.

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb

Property

isis.reflector.validator.

jaxbViewModel
DateTimeTypeAdapter

isis.reflector.validator.

jdoglFromClause

isis.reflector.validator.

jdoqlVariables(Clause

isis.reflector.validator.

mixinsOnly

isis.reflector.validator.

noParamsOnly

Value
(default
value)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(false)

true,false
(false)

Description

Ensures that for all JAXB view models with
properties that are dates or times, that those
properties are annotated with
@XmlJavaTypeAdapter.

Whether to check that the class name in J]DOQL
FROM clause matches or is a supertype of the class
on which it is annotated.

Only "SELECT" queries are validated; "UPDATE"
queries etc are simply ignored.

Whether to check that the class name in J]DOQL
VARIABLES clause is a recognized class.

Note that although JDOQL syntax supports
multiple VARIABLES classes, currently the
validator only checks the first class name found.

Mixins provide a simpler programming model
to contributed domain services.

If enabled, this configuration property will treat
any contributed service as invalid. This is by
way of possibly deprecating and eventually
moving contributed services from the Apache
Isis programming model.

When searching for disableXxx() or hideXxx()
methods, whether to search only for the no-
param version (or also for supporting methods
that match the parameter types of the action).

If enabled then will not search for supporting
methods with the exact set of arguments as the
method it was supporting (and any supporting
methods that have additional parameters will be
treated as invalid). Note that this in effect means
that mixins must be used instead of contributed
services.

15

../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_hide
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins
../ugfun/ugfun.pdf#_ugfun_programming-model_domain-services_contributions
../ugfun/ugfun.pdf#_ugfun_programming-model_domain-services_contributions

Property

isis.reflector.validator.
serviceActionsOnly

Also:

Property

isis.reflector.facets.
ignoreDeprecated

Value
(default
value)

true,false
(false)

Value
(default
value)

true,false
(false)

Description

Domain services are stateless (at least
conceptually) and so should not have any
properties or collections; any that are defined
will not be rendered by the viewers.

If enabled, this configuration property will
ensure that domain services only declare
actions.

Description

Whether deprecated facets should be ignored or
honoured.

By default all deprecated facets are honoured;
they remain part of the metamodel. If instead
this property is set to true then the facets are
simply not loaded into the metamodel and their
semantics will be excluded.

In most cases this should reduce the start-up
times for the application. However, be aware
that this could also substantially alter the
semantics of your application. To be safe, we
recommend that you first run your application
using isis.reflector.validator.allowDeprecated
set to false; if any deprecated annotations etc.
are in use, then the app will fail-fast and refuse
to start.

5.7. UI Facet Config Properties

Table 9. UI Facet Configuration Properties

16

Property

isis.reflector.facet.
cssClass.patterns

isis.reflector.facet.
cssClassFa.patterns

Value
(default
value)

regex:cssl,
regex2:css2,...

regex:fa-
icon,regex2:fa-
icon2,...

5.8. Programming Model

Table 10. Programming Model

Property

isis.reflector.facets

isis.reflector.facets.
exclude

Value
(default
value)

FQCN

FQCN,FQCN2,...

Description

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
delete.*) and the value is a Bootstrap CSS button
class (eg btn-warning) to be applied (as per
‘@PropertylLayout(cssClass='-+) etc) to all action
members matching the regex.

See UI hints for more details.

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
create.*) and the value is a font-awesome icon
name (eg fa-plus) to be applied (as per
@Propertyayout(cssClassFa="-) etc) to all action
members matching the regex.

See UI hints for more details.

Description

This property is now IGNORED.

It was previously used to customize the
programming model, this should now be done
using facets.exclude and facets.include. See
finetuning the programming model for more
details.

Fully qualified class names of (existing, built-in)
facet factory classes to be included to the
programming model.

See finetuning the programming model for
more details.

17

http://getbootstrap.com/css/
../ugfun/ugfun.pdf#_ugfun_ui-hints_action-icons-and-css
http://fortawesome.github.io/Font-Awesome/icons/
../ugfun/ugfun.pdf#_ugfun_ui-hints_action-icons-and-css
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_finetuning
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_finetuning

Property

isis.reflector.facets.

include

isis.reflector.
layoutMetadataReaders

5.9. Policy

Table 11. Runtime Policy Configuration Properties

Property

isis.objects.
editing

isis.reflector.
explicitAnnotations.
action

isis.reflector.facet.
filterVisibility

18

Value
(default
value)

FQCN,FQCN2,...

FQCN,FQCN2,...

Value
(default
value)

true,false
(true)

true,false
(false)

true,false
(true)

Description

Fully qualified class names of (new, custom)
facet factory classes to be included to the
programming model.

See finetuning the programming model for
more details.

Fully qualified class names of classes to be
instantiated to read layout metadata, as used in
for file-based layouts.

See Layout Metadata Reader for more
information.

Description

Whether objects' properties and collections can
be edited directly (for objects annotated with
@lomainObject#fediting()); see below for further
discussion.

Whether action methods need to be explicitly
annotated using @Action.

The default is that any non-@Programmatic
methods that are not otherwise recognised as
properties, collections or supporting methods,
are assumed to be actions. Setting this property
reverses this policy, effectively requiring that all
actions need to be annotated with @Action.

Note that properties and collections are still
implicitly inferred by virtue of being "getters".

Whether objects should be filtered for visibility.

See section below for further discussion.

../ugbtb/ugbtb.pdf#_ugbtb_programming-model_finetuning
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_layout-metadata-reader
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgcfg/rgcfg.pdf#__rgcfg_configuring-core_isis-objects-editing
../rgcfg/rgcfg.pdf#__rgcfg_configuring-core_filterVisibility

5.9.1. Filtering visibility

The framework provides the isis.reflector.facet.filterVisibility configuration property that
influences whether a returned object is visible to the end-user:

¢ Action invocations:

If an action returns a collection that includes the object, then the object will be excluded from
the list when rendered. If it returns a single object and the user does not have access to that
object, then the action will seemingly return null

e Collections:

If a parent object has a collection references another object to which the user does not have
access, then (as for actions) the object will not be rendered in the list

* Properties:

If an parent object has a (scalar) reference some other object to which the user does not have
access, then the reference will be rendered as empty.

* Choices and autoComplete lists:

If an object is returned in a list of choices or within an auto-complete list, and the user does not
have access, then it is excluded from the rendered list.

The original motivation for this feature was to transparently support such features as multi-
tenancy (as per the (non-ASF) Incode Platform's security module). That is, if an entity is logically
"owned" by a user, then the multi-tenancy support can be arranged to prevent some other user
from viewing that object.

By default this configuration property is enabled. To disable the visibility filtering, set the
appropriate configuration property to false:

isis.reflector.facet.filterVisibility=false

Filtering is supported by the Wicket viewer and the Restful Objects viewer, and also by the
WrapperFactory domain service (provided the wrapper’s execution mode is not "skip rules").

In order for the framework to perform this filtering of collections, be aware that
the framework takes a copy of the original collection, filters on the collection, and
returns that filtered collection rather than the original.

i

There are no major side-effects from this algorithm, other than the fact that the
referenced objects will (most likely) need to be resolved in order to determine if
they are visible. This could conceivably have a performance impact in some cases.

19

http://platform.incode.org
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_WrapperFactory

5.9.2. objects.editing

This configuration property in effect allows editing to be disabled globally for an application:

isis.objects.editing=false

We recommend enabling this feature; it will help drive out the underlying business operations
(processes and procedures) that require objects to change; these can then be captured as business
actions.

20

	Core Config’n Properties
	Table of Contents
	Chapter 1. Configuration Properties
	1.1. Other Guides

	Chapter 2. Deployment Types
	2.1. Using the Wicket Viewer
	2.2. Restful Objects viewer only
	2.3. Overriding the deployment type

	Chapter 3. Configuration Files
	Chapter 4. Specifying components
	4.1. Viewer Configuration

	Chapter 5. Configuring Core
	5.1. Domain Events
	5.2. Lifecycle Events
	5.3. UI Events
	5.4. Services
	5.5. MetaModel Introspection
	5.6. MetaModel Validation
	5.7. UI Facet Config Properties
	5.8. Programming Model
	5.9. Policy

