Core Config’n Properties

Table of Contents

1. Configuration Properties
1.1. Other Guides
2. Deployment Types.................
2.1. Using the Wicket Viewer
2.2. Restful Objects viewer only

2.3. Overriding the deployment type

3. Configuration Files
4. Specifying components.............
4.1. Viewer Configuration
5. Configuring Core
5.1.Domain Events
5.2. LifecycleEvents
S3.ULEvents...........coovvvnnnt.

54.Services. ...,
5.5. MetaModel Validation..........
5.6. UI Facet Config Properties
5.7. Programming Model
58.Policy.....covviiiiiiL

Chapter 1. Configuration Properties

Apache Isis' own configuration properties are simple key-value pairs, typically held in the
WEBINF/isis.properties file and other related files. This guide describes how to configure an Apache
Isis application.

This guide covers only the core configuration properties (relating to Apache Isis'
metamodel and runtime management). Configuration properties for the viewers

o can be found in the Wicket Viewer guide and the RestfulObjects viewer guide.
Likewise details of configuring security (Apache Shiro) can be found in the
Security guide, and details for configuring the DataNucleus Object Store can be
found in the DataNucleus guide.

By default the configuration values are part of the built WAR file. Details on how
Q to override these configuration properties externally for different environments
can be found in the Beyond the Basics guide, (deployment chapter).

1.1. Other Guides

Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures” guides.

The user guides available are:

* Fundamentals

e Wicket viewer

Restful Objects viewer
» DataNucleus object store
 Security

» Testing

Beyond the Basics
The reference guides are:

* Annotations

* Domain Services

* Configuration Properties (this guide)
¢ Classes, Methods and Schema

* Apache Isis Maven plugin

¢ Framework Internal Services

The remaining guides are:

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugsec/ugsec.pdf
../ugodn/ugodn.pdf
../ugbtb/ugbtb.pdf#_ugbtb_deployment
../ugfun/ugfun.pdf
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugodn/ugodn.pdf
../ugsec/ugsec.pdf
../ugtst/ugtst.pdf
../ugbtb/ugbtb.pdf
../rgant/rgant.pdf
../rgsvc/rgsvc.pdf
../rgcfg/rgcfg.pdf
../rgcms/rgcms.pdf
../rgmvn/rgmvn.pdf
../rgfis/rgfis.pdf

* Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

* Committers' Guide (release procedures and related practices)

../dg/dg.pdf
../cgcom/cgcom.pdf

Chapter 2. Deployment Types

Apache Isis distinguishes between the application being run in development mode vs running in
production mode. The framework calls this the "deployment type" (corresponding internally to the
DeploymentType class).

(For mostly historical reasons) development mode is actually called SERVER_PROTOTYPE, while
production mode is called just SERVER. (There is also a deprecated mode called SERVER_EXPLORATION;
for all intents and purposes this can considered as an alias of SERVER_PROTOTYPE).

When running in development/prototyping mode, certain capabilities are enabled; most notably
any actions restricted to prototyping mode (using @Action#irestrictTo()) will be available.

2.1. Using the Wicket Viewer

Most of the you’re likely to run Apache Isis using the Wicket viewer. In this case Apache Isis'
"deployment type" concept maps to Wicket’s "configuration” concept:

Table 1. Apache Isis' deployment type corresponds to Apache Wicket’s configuration

Apache Isis Apache Wicket Notes

(Deployment Type) (Configuration)

SERVER_PROTOTYPE development running in development/prototyping mode
SERVER deployment running in production mode

Wicket’s mechanism for specifying the "configuration" is to use a context parameter in web.xml;
Apache Isis automatically infers its own deployment type from this. In other words:

* to specify SERVER (production) mode, use:

web.xml

<context-param>
<param-name>configuration</param-name>
<param-value>deployment</param-value>
</context-param>

* to specify SERVER_PROTOTYPING (development) mode, use:

web.xml

<context-param>
<param-name>configuration</param-name>
<param-value>development</param-value>
</context-param>

../rgant/rgant.pdf#_rgant-Action_restrictTo
../ugvw/ugvw.pdf

2.2. Restful Objects viewer only

Most Apache Isis applications will consist of at least the Wicket viewer and optionally the
RestfulObjects viewer. When both viewers are deployed in the same app, then the bootstrapping is
performed by Wicket, and so the deployment type is configured as described in the previous
section.

In some cases though you may be using Apache Isis to provide a REST API only, that is, you won’t
have deployed the Wicket viewer. In these cases your app will be bootstrapped using Apache Isis'
IsisWebAppBootstrapper.

In this case the deployment type is specified through an Apache Isis-specific context parameter,
called isis.deploymentType:

* to specify SERVER (production) mode, use:

web.xml

<context-param>
<param-name>isis.deploymentType</param-name>
<param-value>server</param-value>
</context-param>

* to specify SERVER_PROTOTYPE (development) mode, use:

web.xml
<context-param>
<param-name>isis.deploymentType</param-name>

<param-value>server-prototype</param-value>
</context-param>

2.3. Overriding the deployment type

If bootstrapping the application using Apache Isis' org.apache.isis.WebServer then it is possible to
override the deployment type using the -t (or --type) flag.

For example:
java -jar ... org.apache.isis.WebServer -t SERVER

where "..." is the (usually rather long) list of JAR files and class directories that will make up your
application.

This works for both the Wicket viewer and the RestfulObjects viewer.

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugbtb/ugbtb.pdf#__ugbtb_web-xml_servlet-context-listeners
../ugbtb/ugbtb.pdf#__ugbtb_web-xml_servlet-context-listeners
../ugbtb/ugbtb.pdf#_ugbtb_deployment_cmd-line
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf

Chapter 3. Configuration Files

When running an Apache Isis webapp, configuration properties are read from configuration files
held in the WEB-INF directory.

The WEBINF/isis.properties file is always read and must exist.

In addition, the following other properties are searched for and if present also read:

viewer_wicket.properties - if the Wicket viewer is in use

viewer_restfulobjects.properties - if the RestfulObjects viewer is in use

viewer.properties - for any other viewer configuration (but there are none currently)
persistor_datanucleus.properties - assuming the JDO/DataNucleus objectstore is in use
persistor.properties - for any other objectstore configuration.

This typically is used to hold JDBC URLs, which is arguably a slight violation of the file (because
there’s nothing in Apache Isis to say that persistors have to use JDBC. However, it is generally

convenient to put these JDBC settings into a single location. If you want, they could reside inin
any of persistor_datanucleus.properties, persistor.properties or (even) isis.properties

authentication_shiro.properties, authorization_shiro.properties

assuming the Shiro Security is in use (but there are no security-related config properties
currently; use shiro.ini for Shiro config)

authentication.properties, authorization.properties

for any other security-related config properties (but there are none currently).

You can if you wish simply store all properties in the isis.properties file; but we think that
breaking properties out into sections is preferable.

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf

Chapter 4. Specifying components

Bootstrapping an Apache Isis application involves identifying both:

* the major components (authentication, persistence mechanisms, viewers) of Apache Isis, and
also

* specifying the domain services and persistent entities that make up the application itself.

The recommended approach is to use an AppManifest, specified either programmatically or through
the configuration properties. This allows the components, services and entities to be specified from
a single class.

To specify the AppManifest as a configuration property, use:

Table 2. Core Configuration Properties (ignored if isis.appManifest is present)

Property Value Implements
(default value)
isis.appManifest FQCN 0.a.i.applib.AppManifest

By convention this implementation resides in an
myapp-app Maven module (as opposed to myapp-
dom or myapp-fixture). See the SimpleApp
archetype for details.

From this the framework can determine the domain services, persistent entities and security
(authentication and authorization) mechanisms to use. Other configuration (including fixtures) can
also be specified this way.

In the AppManifest itself, there are two methods which specify how authentication and

authorisation are configured:

public interface AppManifest {

String getAuthenticationMechanism();
String getAuthorizationMechanism();

These can return either:

 "shiro" - enable integration with Apache Shiro, as described in the security user guide
» "bypass" - bypass security (in effect, configure a no-op implementation that allows everything).
Note that these are actually aliases for concrete implementations. It is also possible to specify a fully

qualified class name to replace either of the two security components, implementing the
appropriate interface.

../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest
../ugfun/ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
../ugfun/ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
../ugsec/ugsec.pdf

4.1. Viewer Configuration

Viewers are specified by way of the filters and servlets in the web.xml file; these are not
bootstrapped by the framework, rather it is the other way around.

../ugbtb/ugbtb.pdf#_ugbtb_web-xml

Chapter 5. Configuring Core

This section lists the core/runtime configuration properties recognized by Apache Isis.

Configuration properties for the JDO/DataNucleus objectstore can be found in the

0 Configuring DataNucleus section later in this chapter, while configuration
properties for the viewers can be found in the their respective chapters, here for
Wicket viewer, and here for the Restful Objects viewer.

5.1. Domain Events

Table 3. Core Configuration Properties for Domain Events

Property

isis.reflector.facet.
actionAnnotation.
domainEvent.postForDefault

isis.reflector.facet.
collectionAnnotation.
domainEvent.postForDefault

isis.reflector.facet.
propertyAnnotation.
domainEvent.postForDefault

Value
(default
value)

true,false
(true)

true,false
(true)

true,false
(true)

Description

Whether an event should be posted if
@Action#domainEvent() is not specified (is set to
ActionDomainEvent.Default).

Whether an event should be posted if
@Collection#domainEvent() is not specified (is set
to CollectionDomainEvent.Default).

Whether an event should be posted if
@Property#domainEvent() is not specified (is set to
PropertyDomainEvent.Default).

In order for these events to fire the action/collection/propert must, at least, be
configured with the relevant annotation (even if no attributes on that annotation

are set).

5.2. Lifecycle Events

Table 4. Core Configuration Properties for Lifecycle Events

Property

isis.reflector.facet.
domainObjectAnnotation.
createdlLifecycleEvent.
postForDefault

isis.reflector.facet.
domainObjectAnnotation.
loadedLifecycleEvent.
postForDefault

Value
(default
value)

true,false
(true)

true,false
(true)

Description

Whether an event should be posted if
@omainObject#createdlLifecycleEvent() is not
specified (is set to ObjectCreatedEvent.Default).

Whether an event should be posted if
@DomainObject#loadedLifecycleEvent() is not
specified (is set to ObjectLoadedEvent.Default).

../ugodn/ugodn.pdf#_ugodn_configuring
../ugvw/ugvw.pdf#_ugvw_configuration-properties
../ugvw/ugvw.pdf#_ugvw_configuration-properties
../ugvro/ugvro.pdf#_ugvro_configuration-properties
../rgant/rgant.pdf#_rgant-Action_domainEvent
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Property_domainEvent
../rgant/rgant.pdf#_rgant-DomainObject_createdLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_loadedLifecycleEvent

Property Value Description
(default
value)

isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#tpersistinglifecycleEvent() is not
persistinglLifecycleEvent. specified (is set to
postForDefault ObjectPersistingEvent.Default).
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#persistedLifecycleEvent() is not
persistedLifecycleEvent. specified (is set to ObjectPersistedEvent.Default).
postForDefault
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @omainObject#removinglLifecycleEvent() is not
removinglLifecycleEvent. specified (is set to ObjectRemovingEvent.Default).
postForDefault
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#updatinglLifecycleEvent() is not
updatinglLifecycleEvent. specified (is set to ObjectUpdatingEvent.Default).
postForDefault
isis.reflector.facet. true,false Whether an event should be posted if
domainObjectAnnotation. (true) @DomainObject#updatedLifecycleEvent() is not
updatedLifecycleEvent. specified (is set to ObjectUpdatedEvent.Default).
postForDefault

Q In order for these events to fire the class must be annotated using @DomainObject

(even if no attributes on that annotation are set).

5.3. UI Events

Table 5. Core Configuration Properties for UI Events

Property

isis.reflector.facet.
domainObjectLayoutAnnotation.
cssClassUiEvent.postForDefault

isis.reflector.facet.
domainObjectLayoutAnnotation.
iconUiEvent.postForDefault

isis.reflector.facet.
domainObjectLayoutAnnotation.
titleUiEvent.postForDefault

Value
(default
value)

true,false
(true)

true,false
(true)

true,false
(true)

Description

Whether an event should be posted if
@DomainObjectLayout#icssClassUiEvent() is not
specified (is set to CssClassUiEvent.Default).

Whether an event should be posted if
@DomainObjectLayout#iconUiEvent() is not
specified (is set to IconUiEvent.Default).

Whether an event should be posted if
@DomainObjectLayout#titleUiEvent() is not
specified (is set to TitleUiEvent.Default).

../rgant/rgant.pdf#_rgant-DomainObject_persistingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_persistedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_removingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassUiEvent
../rgant/rgant.pdf#_rgant-DomainObjectLayout_iconUiEvent
../rgant/rgant.pdf#_rgant-DomainObjectLayout_titleUiEvent

v

5.4. Services

Table 6. Core Configuration Properties for Services

Property

isis.services

isis.services.

audit.
objects

isis.services.

command.
actions

isis.services.

command.
properties

isis.services.

injector.
injectPrefix

isis.services.

injector.
setPrefix

isis.services.

publish.
objects

10

Value
(default
value)

FQCN,FQCN2,...

all, none
(all)

all, ignoreSafe,
none (none)

all, none (none)

true,false
(false)

true,false
(true)

all, none
(all)

In order for these events to fire the class must be annotated using
@DomainObjectlLayout (even if no attributes on that annotation are set).

Description

NO LONGER REQUIRED; replaced by
AppManifest. (It used to define the list of fully
qualified class names of classes to be
instantiated as domain services; this is now
inferred from the list of modules provided to the
app manifest).

Whether the changed properties of objects
should be automatically audited (for objects
annotated with
@DomainObject(auditing=Auditing.AS_CONFIGURED).

Whether action invocations should be
automatically reified into commands (for

actions annotated with
@Action(command=CommandReification.AS_CONFIGUR

ED).
ignoreQueryOnly is an alias for ignoreSafe.

(Whether property edits should be automatically
reified into commands (for properties annotated
with
@Property(command=CommandReification.AS_CONFIG
URED).

(Whether the framework should support
inject:++() as a prefix for injecting domain
services into other domain objects. + By default
this is disabled. This can help reduce application
start-up times.

Whether the framework should support set:-()
as a prefix for injecting domain services into
other domain objects. + By default this is
enabled (no change in 1.13.0). If the setting is
changed to disabled then this may reduce
application start-up times.

Whether changed objects should be
automatically published (for objects annotated
with
@DomainObject(publishing=Publishing.AS_CONFIGU
RED).

../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest
../rgant/rgant.pdf#_rgant-DomainObject_auditing
../rgant/rgant.pdf#_rgant-Action_command
../rgant/rgant.pdf#_rgant-Action_command
../rgant/rgant.pdf#_rgant-Property_command
../rgant/rgant.pdf#_rgant-Property_command
../rgant/rgant.pdf#_rgant-DomainObject_publishing
../rgant/rgant.pdf#_rgant-DomainObject_publishing

Value
(default
value)

Property

isis.services.
publish.
actions

all, ignoreSafe,
none (none)

isis.services. all, none (none)

publish.

properties

isis.services. fully qualified
ServicesInstaller package names
FromAnnotation. (CSV)
packagePrefix

5.5. MetaModel Validation

Table 7. Metamodel Validation

Property Value
(default
value)

isis.reflector.validator FQCN

isis.reflector.validator. true,false
actionCollection (true)

ParameterChoices

isis.reflector.validator. true,false

allowDeprecated (true)
isis.reflector.validator. true,false
checkModuleExtent (true)

Description

Whether actions should be automatically
published (for actions annotated with
@Action(publishing=Publishing.AS_CONFIGURED).

Whether properties should be automatically
published (for properties annotated with
@Property(publishing=Publishing.AS_CONFIGURED).

NO LONGER REQUIRED; replaced by
AppManifest. (It used to define the list of
packages to search for domain services; ; this is
now inferred from the list of modules provided
to the app manifest).

Description

Custom implementation of MetaModelValidator

(in the
org.apache.isis.core.metamodel.specloader.vali

dator package)
See Custom Validator to learn more.

Whether to check that collection action
parameters have a corresponding choices or
autoComplete facet.

In the current implementation such a facet is
always required, so this configuration option
has only been introduced as a feature flag in
case it needs to be disabled for some reason.

Whether deprecated annotations or naming
conventions are tolerated or not. If not, then a
metamodel validation error will be triggered,
meaning the app won’t boot (fail-fast).

See also
isis.reflector.facets.ignoreDeprecated.

Whether to check that all domain objects
discovered reside under the top-level module of
the app manifest. Note that the application must
be bootstrapped using an AppManifest2.

11

../rgant/rgant.pdf#_rgant-Action_publishing
../rgant/rgant.pdf#_rgant-Action_publishing
../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_custom-validator

Property

isis.reflector.validator.

ensureUniqueObjectTypes

isis.reflector.validator.

explicitObjectType

isis.reflector.validator.

jaxbViewModel
NotAbstract

isis.reflector.validator.

jaxbViewModel
NotInnerClass

isis.reflector.validator.

jaxbViewModel
NoArgConstructor

isis.reflector.validator.

jaxbViewModel
ReferenceTypeAdapter

isis.reflector.validator.

jaxbViewModel
DateTimeTypeAdapter

12

Value
(default
value)

true,false
(true)

true,false
(false)

true,false
(true)

true,false
(true)

true,false
(false)

true,false
(true)

true,false
(true)

Description

Whether to ensure that all classes in the
metamodel map to a different object type
(typically either as explicitly specified using
@DomainObject(objectType=:--), or their class
name as a fallback).

Whether to check that the class has an object
type explicitly specified somehow. The object
type is used by the framework as an alias for the
object’s concrete class; it is one part of the
object’s OID and can be seen in the URLs of the
Wicket viewer and Restful Objects viewer, and is
encoded in the Bookmarks returned by the
BookmarkService. In this was it may also be
persisted, for example in polymorphic
associations or command or auditing tables. If
the object type is not specified explicitly, then
this can cause data migration issues if the class
is subsequently refactored (eg renamed, or
moved to a different package). This
configuration property can be used to enforce a
rule that the object type must always be
specified (for persistent entities and view
models).

Ensures that all JAXB view models are not
abstract (so can be instantiated).

Ensures that all JAXB view models are not inner
classes (so can be instantiated).

Ensures that all JAXB view models have a public
no-arg constructor.

This isn’t actually required (hence not enabled
by default) but is arguably good practice.

Ensures that for all JAXB view models with
properties that reference persistent entities, that
those entities are annotated with
@XmlJavaTypeAdapter.

Ensures that for all JAXB view models with
properties that are dates or times, that those
properties are annotated with
@XmlJavaTypeAdapter.

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb

Property

isis.reflector.validator.

jdoqlFromClause

isis.reflector.validator.

jdoqlVariables(Clause

isis.reflector.validator.

mixinsOnly

isis.reflector.validator.

noParamsOnly

isis.reflector.validator.

serviceActionsOnly

Also:

Value
(default
value)

true,false
(true)

true,false
(true)

true,false
(false)

true,false
(false)

true,false
(false)

Description

Whether to check that the class name in JDOQL
FROM clause matches or is a supertype of the class
on which it is annotated.

Only "SELECT" queries are validated; "UPDATE"
queries etc are simply ignored.

Whether to check that the class name in JDOQL
VARIABLES clause is a recognized class.

Note that although JDOQL syntax supports
multiple VARIABLES classes, currently the
validator only checks the first class name found.

Mixins provide a simpler programming model to
contributed domain services.

If enabled, this configuration property will treat
any contributed service as invalid. This is by
way of possibly deprecating and eventually
moving contributed services from the Apache
Isis programming model.

When searching for disableXxx() or hideXxx()
methods, whether to search only for the no-
param version (or also for supporting methods
that match the parameter types of the action).

If enabled then will not search for supporting
methods with the exact set of arguments as the
method it was supporting (and any supporting
methods that have additional parameters will be
treated as invalid). Note that this in effect means
that mixins must be used instead of contributed
services.

Domain services are stateless (at least
conceptually) and so should not have any
properties or collections; any that are defined
will not be rendered by the viewers.

If enabled, this configuration property will
ensure that domain services only declare
actions.

13

../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_hide
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins
../ugfun/ugfun.pdf#_ugfun_programming-model_domain-services_contributions
../ugfun/ugfun.pdf#_ugfun_programming-model_domain-services_contributions

Property

isis.reflector.facets.
ignoreDeprecated

Value
(default
value)

true,false
(false)

Description

Whether deprecated facets should be ignored or
honoured.

By default all deprecated facets are honoured;
they remain part of the metamodel. If instead
this property is set to true then the facets are
simply not loaded into the metamodel and their
semantics will be excluded.

In most cases this should reduce the start-up
times for the application. However, be aware
that this could also substantially alter the
semantics of your application. To be safe, we
recommend that you first run your application
using isis.reflector.validator.allowDeprecated
set to false; if any deprecated annotations etc.
are in use, then the app will fail-fast and refuse
to start.

5.6. UI Facet Config Properties

Table 8. UI Facet Configuration Properties

Property

isis.reflector.facet.
cssClass.patterns

isis.reflector.facet.
cssClassFa.patterns

Value
(default
value)

regex:cssl,
regex2:css2,...

regex:fa-
icon,regex2:fa-
icon2,...

5.7. Programming Model

Table 9. Programming Model

14

Description

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
delete.*) and the value is a Bootstrap CSS button
class (eg btn-warning) to be applied (as per
‘@CssClass()) to all action members matching
the regex.

See UI hints for more details.

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
create.*) and the value is a font-awesome icon
name (eg fa-plus) to be applied (as per
@CssClassFa()) to all action members matching
the regex.

See UI hints for more details.

http://getbootstrap.com/css/
../ugfun/ugfun.pdf#_ugfun_ui-hints_action-icons-and-css
http://fortawesome.github.io/Font-Awesome/icons/
../ugfun/ugfun.pdf#_ugfun_ui-hints_action-icons-and-css

Property Value
(default
value)

isis.reflector.facets FQCN

isis.reflector.facets.
exclude

FQCN,FQCN2,...

isis.reflector.facets.
include

FQCN,FQCN2,...

isis.reflector.
layoutMetadataReaders

FQCN,FQCN2,...

5.8. Policy

Table 10. Runtime Policy Configuration Properties

Property Value
(default
value)

isis.objects. true,false

editing (true)
isis.reflector. true,false
explicitAnnotations. (false)
action

Description

This property is now IGNORED. It was
previously used to customize the programming
model, this should now be done using
facets.exclude and facets.include. See
finetuning the programming model for more
details.

Fully qualified class names of (existing, built-in)
facet factory classes to be included to the
programming model.

See finetuning the programming model for more
details.

Fully qualified class names of (new, custom)
facet factory classes to be included to the
programming model.

See finetuning the programming model for more
details.

Fully qualified class names of classes to be
instantiated to read layout metadata, as used in
for file-based layouts.

See Layout Metadata Reader for more
information.

Description

Whether objects' properties and collections can
be edited directly (for objects annotated with
@DomainObject#editing()); see below for further
discussion.

Whether action methods need to be explicitly
annotated using @Action. The default is that any
non-@Programmatic methods that are not
otherwise recognised as properties, collections
or supporting methods, are assumed to be
actions. Setting this property reverses this policy,
effectively requiring that all actions need to be
annotated with @Action. Note that properties and
collections are still implicitly inferred by virtue
of being "getters".

15

../ugbtb/ugbtb.pdf#_ugbtb_programming-model_finetuning
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_finetuning
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_finetuning
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_layout-metadata-reader
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgcfg/rgcfg.pdf#__rgcfg_configuring-core_isis-objects-editing

Property Value Description

(default

value)
isis.reflector.facet. true,false Whether objects should be filtered for visibility.
filterVisibility (true) See section below for further discussion.

5.8.1. Filtering visibility

The framework provides the isis.reflector.facet.filterVisibility configuration property that
influences whether a returned object is visible to the end-user:

e Action invocations:

If an action returns a collection that includes the object, then the object will be excluded from
the list when rendered. If it returns a single object and the user does not have access to that
object, then the action will seemingly return null

e Collections:

If a parent object has a collection references another object to which the user does not have
access, then (as for actions) the object will not be rendered in the list

* Properties:

If an parent object has a (scalar) reference some other object to which the user does not have
access, then the reference will be rendered as empty.

* Choices and autoComplete lists:

If an object is returned in a list of choices or within an auto-complete list, and the user does not
have access, then it is excluded from the rendered list.

The original motivation for this feature was to transparently support such features as multi-
tenancy (as per the (non-ASF) Incode Platform's security module). That is, if an entity is logically
"owned" by a user, then the multi-tenancy support can be arranged to prevent some other user
from viewing that object.

By default this configuration property is enabled. To disable the visibility filtering, set the
appropriate configuration property to false:

isis.reflector.facet.filterVisibility=false

Filtering is supported by the Wicket viewer and the Restful Objects viewer, and also by the
WrapperFactory domain service (provided the wrapper’s execution mode is not "skip rules").

16

../rgcfg/rgcfg.pdf#__rgcfg_configuring-core_filterVisibility
http://platform.incode.org
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_WrapperFactory

i

In order for the framework to perform this filtering of collections, be aware that
the framework takes a copy of the original collection, filters on the collection, and
returns that filtered collection rather than the original.

There are no major side-effects from this algorithm, other than the fact that the
referenced objects will (most likely) need to be resolved in order to determine if
they are visible. This could conceivably have a performance impact in some
cases.

5.8.2. objects.editing

This configuration property in effect allows editing to be disabled globally for an application:

isis.objects.editing=false

We recommend enabling this feature; it will help drive out the underlying business operations
(processes and procedures) that require objects to change; these can then be captured as business

actions.

17

	Core Config’n Properties
	Table of Contents
	Chapter 1. Configuration Properties
	1.1. Other Guides

	Chapter 2. Deployment Types
	2.1. Using the Wicket Viewer
	2.2. Restful Objects viewer only
	2.3. Overriding the deployment type

	Chapter 3. Configuration Files
	Chapter 4. Specifying components
	4.1. Viewer Configuration

	Chapter 5. Configuring Core
	5.1. Domain Events
	5.2. Lifecycle Events
	5.3. UI Events
	5.4. Services
	5.5. MetaModel Validation
	5.6. UI Facet Config Properties
	5.7. Programming Model
	5.8. Policy

