
DataNucleus Object Store

Table of Contents
1. DataNucleus Object Store. 1

1.1. Other Guides . 1

2. Configuring DataNucleus . 2

2.1. Configuration Properties . 2

2.2. persistence.xml . 3

2.3. Eagerly Registering Entities . 3

2.4. Persistence by Reachability . 4

2.5. Using JNDI DataSource . 6

3. JDO Mappings . 8

3.1. 1-m Bidirectional relationships . 8

3.2. Mandatory Properties in Subtypes . 14

3.3. Mapping to a View . 15

4. Database Schemas . 16

4.1. Listener to create schema . 16

4.2. Alternative implementation . 17

5. Hints and Tips . 19

5.1. Overriding JDO Annotations . 19

5.2. Subtype not fully populated . 20

5.3. Java8 . 22

5.4. Diagnosing n+1 Issues . 22

5.5. Typesafe Queries and Fetch-groups . 23

Chapter 1. DataNucleus Object Store
The DataNucleus Object Store enables domain objects to be persisted to relational as well as NoSQL
databases. The object store is implemented using DataNucleus.

This user guide discuss end-user features, configuration and customization of the DataNucleus
object store.

DataNucleus as a product also supports the JPA API; Apache Isis is likely to also
support JPA in the future.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user and reference guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• DataNucleus object store (this guide)

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)

1

http://datanucleus.org
../ugfun/ugfun.pdf
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugodn/ugodn.pdf
../ugsec/ugsec.pdf
../ugtst/ugtst.pdf
../ugbtb/ugbtb.pdf
../rgant/rgant.pdf
../rgsvc/rgsvc.pdf
../rgcfg/rgcfg.pdf
../rgcms/rgcms.pdf
../rgmvn/rgmvn.pdf
../rgfis/rgfis.pdf
../dg/dg.pdf
../cgcom/cgcom.pdf

Chapter 2. Configuring DataNucleus
Apache Isis programmatically configures DataNucleus; any Apache Isis properties with the prefix
isis.persistor.datanucleus.impl are passed through directly to the JDO/DataNucleus objectstore
(with the prefix stripped off, of course).

DataNucleus will for itself also and read the META-INF/persistence.xml; at a minimum this defines
the name of the "persistence unit". In theory it could also hold mappings, though in Apache Isis we
tend to use annotations instead.

Furthermore, DataNucleus will search for various other XML mapping files, eg mappings.jdo. A full
list can be found here. The metadata in these XML can be used to override the annotations of
annotated entities; see Overriding JDO Annotatons for further discussion.

2.1. Configuration Properties
These configuration properties are typically stored in WEB-INF/persistor_datanucleus.properties.
However, you can place all configuration properties into WEB-INF/isis.properties if you wish (the
configuration properties from all config files are merged together).

2.1.1. Configuration Properties for Apache Isis itself

Table 1. JDO/DataNucleus Objectstore Configuration Properties

Property Value
(default value)

Description

isis.persistor.
datanucleus.
classMetadataLoadedListener

FQCN The default
(o.a.i.os.jdo.dn.CreateSchemaObjectFromClassMe
tadata) creates a DB schema object

isis.persistor.datanucleus.
RegisterEntities.packagePrefix

fully qualified
package names
(CSV)

that specifies the entities early rather than allow
DataNucleus to find the entities lazily. Further
discussion below. This property is IGNORED if
the isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

isis.persistor.datanucleus.
PublishingService.serializedFo
rm

zipped

2.1.2. Configuration Properties passed through directly to DataNucleus.

Table 2. JDO/DataNucleus Objectstore Configuration Properties

Property Value
(default value)

Description

isis.persistor.datanucleus.imp
l.*

Passed through directly to Datanucleus (with
isis.persistor.datanucleus.impl prefix stripped)

2

http://www.datanucleus.org/products/datanucleus/jdo/metadata.html
../ugbtb/ugbtb.pdf#_ugbtb_other-techniques_overriding-jdo-annotations
../ugodn/ugodn.pdf#_ugodn_configuring_eagerly-registering-entities
../rgcfg/rgcfg.pdf#_rgcfg_specifying-components
../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest

Property Value
(default value)

Description

isis.persistor.datanucleus.imp
l.
datanucleus.persistenceByReach
abilityAtCommit

false We recommend this setting is disabled.
Further discussion below.

2.2. persistence.xml
DataNucleus will for itself also and read the META-INF/persistence.xml. In theory it can hold
mappings and even connection strings. However, with Apache Isis we tend to use annotations
instead and externalize connection strings. so its definition is extremely simply, specifying just the
name of the "persistence unit".

Here’s the one provided by the SimpleApp archetype:

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

 <persistence-unit name="simple">
 </persistence-unit>
</persistence>

Normally all one needs to do is to change the persistence-unit name.

If you use Eclipse IDE on Windows then note the importance of the
persistence.xml file to make DataNucleus enhancer work correctly.

See DataNucleus' documentation on persistence.xml to learn more.

2.3. Eagerly Registering Entities
Both Apache Isis and DataNucleus have their own metamodels of the domain entities. Apache Isis
builds its metamodel by walking the graph of types of the domain services. The JDO/DataNucleus
objectstore then takes these types and registers them with DataNucleus.

In some cases, though, not every entity type is discoverable from the API of the service actions. This
is especially the case if you have lots of subtypes (where the action method specifies only the
supertype). In such cases the Isis and JDO metamodels is built lazily, when an instance of that
(sub)type is first encountered.

Apache Isis is quite happy for the metamodel to be lazily created, and - to be fair - DataNucleus also
works well in most cases. In some cases, though, we have found that the JDBC driver (eg HSQLDB)
will deadlock if DataNucleus tries to submit some DDL (for a lazily discovered type) intermingled

3

../ugodn/ugodn.pdf#_ugodn_configuring_disabling-persistence-by-reachability
../ugfun/ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
../dg/dg.pdf#__dg_ide_eclipse_workaround-for-path-limits
http://www.datanucleus.org/products/datanucleus/jdo/persistence.html#persistenceunit

with DML (for updating). In any case, it’s probably not good practice to have DataNucleus work this
way.

The framework thus provide mechanisms to search for all @PersistenceCapable entities under
specified package(s), and registers them all eagerly. In fact there are two:

• as of 1.9.0 the recommended (and simpler) approach is to specify an AppManifest, either as a
isis.appManifest configuration property or programmatically.

• for earlier versions the isis.persistor.datanucleus.RegisterEntities.packagePrefix

configuration property can be specified. To bootstrap as a webapp this is usually specified in
persistor_datanucleus.properties. (This is also supported in 1.9.0 if no AppManifest is specified.
For integration testing this can be specified programatically.

Further discussion on specifying the package(s) in integration testing (for either approach) can be
found in the user guide.

2.4. Persistence by Reachability
By default, JDO/DataNucleus supports the concept of persistence-by-reachability. That is, if a non-
persistent entity is associated with an already-persistent entity, then DataNucleus will detect this
and will automatically persist the associated object. Put another way: there is no need to call
Apache Isis' RepositoryService#persist(.) or RepositoryService#persistAndFlush(.) methods.

However, convenient though this feature is, you may find that it causes performance issues.

DataNucleus' persistence-by-reachability may cause performance issues. We
strongly recommend that you disable it.

One scenario in particular where this performance issues can arise is if your entities implement the
java.lang.Comparable interface, and you have used Apache Isis' ObjectContracts utility class. The
issue here is that ObjectContracts implementation can cause DataNucleus to recursively rehydrate a
larger number of associated entities. (More detail below).

We therefore recommend that you disable persistence-by-reachability by adding the following to
persistor_datanucleus.properties:

isis.persistor.datanucleus.impl.datanucleus.persistenceByReachabilityAtCommit=false

This change has been made to both the HelloWorld and SimpleApp archetypes.

If you do disable this feature, then you will (of course) need to ensure that you explicitly persist all
entities using the RepositoryService#persist(.) or RepositoryService#persistAndFlush(.) methods.

2.4.1. The issue in more detail

Consider these entities (yuml.me/b8681268):

4

../rgcms/rgcms.pdf#_rgcms_classes_super_AppManifest
../rgcfg/rgcfg.pdf#_rgcfg_specifying-components
../ugtst/ugtst.pdf#_ugtst_integ-test-support_bootstrapping
http://www.datanucleus.org/products/datanucleus/jdo/persistence.html#persistence_by_reachability
../rgcms/rgcms.pdf#_rgcms_classes_utility_ObjectContracts
../ugfun/ugfun.pdf#_ugfun_getting-started_helloworld-archetype
../ugfun/ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
http://yuml.me/edit/b8681268

In the course of a transaction, the Agreement entity is loaded into memory (not necessarily
modified), and then new AgreementRoles are associated to it.

All these entities implement Comparable using ObjectContracts, and the implementation of
AgreementRole's (simplified) is:

public class AgreementRole {
 ...
 public int compareTo(AgreementRole other) {
 return ObjectContracts.compareTo(this, other, "agreement","startDate","party"
);
 }
}

while Agreement's is implemented as:

public class Agreement {
 ...
 public int compareTo(Agreement other) {
 return ObjectContracts.compareTo(this, other, "reference");
 }
}

and Party's is similarly implemented as:

public class Party {
 ...
 public int compareTo(Party other) {
 return ObjectContracts.compareTo(this, other, "reference");
 }
}

DataNucleus’s persistence-by-reachability algorithm adds the AgreementRole instances into a
SortedSet, which causes AgreementRole#compareTo() to fire:

• the evaluation of the "agreement" property delegates back to the Agreement, whose own
Agreement#compareTo() uses the scalar reference property. As the Agreement is already in-memory,
this does not trigger any further database queries

• the evaluation of the "startDate" property is just a scalar property of the AgreementRole, so will
already in-memory

• the evaluation of the "party" property delegates back to the Party, whose own Party#compareTo()
requires the uses the scalar reference property. However, since the Party is not yet in-memory,

5

images/runtime/configuring-datanucleus/disabling-persistence-by-reachability/party-agreementrole-agreement.png

using the reference property triggers a database query to "rehydrate" the Party instance.

In other words, in figuring out whether AgreementRole requires the persistence-by-reachability
algorithm to run, it causes the adjacent associated entity Party to also be retrieved.

2.5. Using JNDI DataSource
Isis' JDO objectstore can be configured either to connect to the database using its own connection
pool, or by using a container-managed datasource.

2.5.1. Application managed

Using a connection pool managed directly by the application (that is, by Apache Isis' JDO objectstore
and ultimately by DataNucleus) requires a single set of configuration properties to be specified.

In either WEB-INF\isis.properties file (or WEB-INF\persistor.properties, or WEB-

INF\persistor_datanucleus.properties), specify the connection driver, url, username and password.

For example:

isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionDriverName=net.sf.log4jdbc.
DriverSpy
isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionURL=jdbc:log4jdbc:hsqldb:me
m:test
isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionUserName=sa
isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionPassword=

Those configuration properties that start with the prefix isis.persistor.datanucleus.impl. are
passed through directly to DataNucleus (with the prefix removed).

It is also possible to specify the ` datanucleus.ConnectionPasswordDecrypter ` property; see the
DataNucleus documentation for further details.

2.5.2. Container managed (JNDI)

Using a datasource managed by the servlet container requires three separate bits of configuration.

Firstly, specify the name of the datasource in the WEB-INF\persistor_datanucleus.properties file. For
example:

If connection pool settings are also present in this file, they will simply be ignored. Any other
configuration properties that start with the prefix isis.persistor.datanucleus.impl. are passed
through directly to DataNucleus (with the prefix removed).

Secondly, in the WEB-INF/web.xml, declare the resource reference:

6

http://www.datanucleus.org/products/accessplatform_4_1/persistence_properties.html#ConnectionPasswordDecrypter

<resource-ref>
 <description>db</description>
 <res-ref-name>jdbc/simpleapp</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Finally, declare the datasource as required by the servlet container. For example, if using Tomcat 7,
the datasource can be specified by adding the following to $TOMCAT_HOME/conf/context.xml:

<Resource name="jdbc/simpleapp"
 auth="Container"
 type="javax.sql.DataSource"
 maxActive="100"
 maxIdle="30"
 maxWait="10000"
 username="sa"
 password="p4ssword"
 driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
 url="jdbc:sqlserver://127.0.0.1:1433;instance=.;databaseName=simpleapp"/>

You will also need to make sure that the JDBC driver is on the servlet container’s classpath. For
Tomcat, this means copying the driver to $TOMCAT_HOME/lib.

According to Tomcat’s documentation, it is supposedly possible to copy the
conf/context.xml to the name of the webapp, eg conf/mywebapp.xml, and scope the
connection to that webapp only. I was unable to get this working, however.

7

Chapter 3. JDO Mappings

3.1. 1-m Bidirectional relationships
Consider a bidirectional one-to-many association between two entities; a collection member in the
"parent" and a property member on the "child".

We can tell DataNucleus about the bidirectionality using @Persistent(mappedBy=…), or we can take
responsibility for this aspect ourselves.

In addition, the two entities can be associated either without or with a join table (indicated by the
@Join annotation):

• without a join table is more common; a regular foreign key in the child table for
FermentationVessel points back up to the associated parent Batch

• with a join table; a link table holds the tuple representing the linkage.

Testing (as of 1.13.0, against dn-core 4.1.7/dn-rdbms 4.1.9) has determined there are two main
rules:

• If not using @Join, then the association must be maintained by setting the child association on
the parent.

It is not sufficient to simply add the child object to the parent’s collection.

• @Persistent(mappedBy=…) and @Join cannot be used together.

Put another way, if using @Join then you must maintain both sides of the relationship in the
application code.

In the examples that follow, we use two entities, Batch and FermentationVessel (from a brewery
domain). In the original example domain the relationship between these two entities was optional
(a FermentationVessel may have either none or one Batch associated with it); for the purpose of this
article we’ll explore both mandatory and optional associations.

3.1.1. Mandatory, no @Join

In the first scenario we have use @Persistent(mappedBy=…) to indicate a bidirectional association,
without any @Join:

public class Batch {

 // getters and setters omitted

 @Persistent(mappedBy = "batch", dependentElement = "false") ①
 private SortedSet<FermentationVessel> vessels = new TreeSet<FermentationVessel>();
}

8

① "mappedBy" means this is bidirectional

and

public class FermentationVessel implements Comparable<FermentationVessel> {

 // getters and setters omitted

 @Column(allowsNull = "false") ①
 private Batch batch;

 @Column(allowsNull = "false")
 private State state; ②
}

① mandatory association up to parent

② State is an enum (omitted)

Which creates this schema:

CREATE TABLE "batch"."Batch"
(
 "id" BIGINT GENERATED BY DEFAULT AS IDENTITY,
 ...
 "version" BIGINT NOT NULL,
 CONSTRAINT "Batch_PK" PRIMARY KEY ("id")
)
CREATE TABLE "fvessel"."FermentationVessel"
(
 "id" BIGINT GENERATED BY DEFAULT AS IDENTITY,
 "batch_id_OID" BIGINT NOT NULL,
 "state" NVARCHAR(255) NOT NULL,
 ...
 "version" TIMESTAMP NOT NULL,
 CONSTRAINT "FermentationVessel_PK" PRIMARY KEY ("id")
)

That is, there is an mandatory foreign key from FermentationVessel to Batch.

In this case we can use this code:

public Batch transfer(final FermentationVessel vessel) {
 vessel.setBatch(this); ①
 vessel.setState(FermentationVessel.State.FERMENTING);
 return this;
}

① set the parent on the child

9

This sets up the association correctly, using this SQL:

UPDATE "fvessel"."FermentationVessel"
 SET "batch_id_OID"=<0>
 ,"state"=<'FERMENTING'>
 ,"version"=<2016-07-07 12:37:14.968>
 WHERE "id"=<0>

The following code will also work:

public Batch transfer(final FermentationVessel vessel) {
 vessel.setBatch(this); ①
 getVessels().add(vessel); ②
 vessel.setState(FermentationVessel.State.FERMENTING);
 return this;
}

① set the parent on the child

② add the child to the parent’s collection.

However, obviously the second statement is redundant.

3.1.2. Optional, no @Join

If the association to the parent is made optional:

public class FermentationVessel implements Comparable<FermentationVessel> {

 // getters and setters omitted

 @Column(allowsNull = "true") ①
 private Batch batch;

 @Column(allowsNull = "false")
 private State state;
}

① optional association up to parent

Which creates this schema:

10

CREATE TABLE "batch"."Batch"
(
 "id" BIGINT GENERATED BY DEFAULT AS IDENTITY,
 ...
 "version" BIGINT NOT NULL,
 CONSTRAINT "Batch_PK" PRIMARY KEY ("id")
)
CREATE TABLE "fvessel"."FermentationVessel"
(
 "id" BIGINT GENERATED BY DEFAULT AS IDENTITY,
 "batch_id_OID" BIGINT NULL,
 "state" NVARCHAR(255) NOT NULL,
 ...
 "version" TIMESTAMP NOT NULL,
 CONSTRAINT "FermentationVessel_PK" PRIMARY KEY ("id")
)

This is almost exactly the same, except the foreign key from FermentationVessel to Batch is now
nullable.

In this case then setting the parent on the child still works:

public Batch transfer(final FermentationVessel vessel) {
 vessel.setBatch(this); ①
 vessel.setState(FermentationVessel.State.FERMENTING);
 return this;
}

① set the parent on the child

HOWEVER, if we (redundantly) update both sides, then - paradoxically - the association is NOT set
up

public Batch transfer(final FermentationVessel vessel) {
 vessel.setBatch(this); ①
 getVessels().add(vessel); ②
 vessel.setState(FermentationVessel.State.FERMENTING);
 return this;
}

① set the parent on the child

② add the child to the parent’s collection.

11

It’s not clear if this is a bug in dn-core 4.1.7/dn-rdbms 4.19; an earlier thread on
the mailing list from 2014 actually gave the opposite advice, see this thread and in
particular this message.

In fact we also have had a different case raised (url lost) which argues that the
parent should only be set on the child, and the child not added to the parent’s
collection. This concurs with the most recent testing.

Therefore, the simple advice is that, for bidirectional associations, simply set the parent on the
child, and this will work reliably irrespective of whether the association is mandatory or optional.

3.1.3. With @Join

Although DataNucleus does not complain if @Persistence(mappedBy=…) and @Join are combined,
testing (against dn-core 4.1.7/dn-rdbms 4.19) has shown that the bidirectional association is not
properly maintained.

Therefore, we recommend that if @Join is used, then manually maintain both sides of the
relationship and do not indicate that the association is bidirectional.

For example:

public class Batch {

 // getters and setters omitted

 @Join(table = "Batch_vessels")
 @Persistent(dependentElement = "false")
 private SortedSet<FermentationVessel> vessels = new TreeSet<FermentationVessel>();
}

and

public class FermentationVessel implements Comparable<FermentationVessel> {

 // getters and setters omitted

 @Column(allowsNull = "true") ①
 private Batch batch;

 @Column(allowsNull = "false")
 private State state;
}

① optional association up to parent

creates this schema:

12

http://isis.markmail.org/thread/ipu2lzqqikqdglox
http://markmail.org/message/hblptpw675mlw723

CREATE TABLE "batch"."Batch"
(
 "id" BIGINT GENERATED BY DEFAULT AS IDENTITY,
 ...
 "version" BIGINT NOT NULL,
 CONSTRAINT "Batch_PK" PRIMARY KEY ("id")
)
CREATE TABLE "fvessel"."FermentationVessel"
(
 "id" BIGINT GENERATED BY DEFAULT AS IDENTITY,
 "state" NVARCHAR(255) NOT NULL,
 ...
 "version" TIMESTAMP NOT NULL,
 CONSTRAINT "FermentationVessel_PK" PRIMARY KEY ("id")
)
CREATE TABLE "batch"."Batch_vessels"
(
 "id_OID" BIGINT NOT NULL,
 "id_EID" BIGINT NOT NULL,
 CONSTRAINT "Batch_vessels_PK" PRIMARY KEY ("id_OID","id_EID")
)

That is, there is NO foreign key from FermentationVessel to Batch, instead the Batch_vessels table
links the two together.

These should then be maintained using:

public Batch transfer(final FermentationVessel vessel) {
 vessel.setBatch(this); ①
 getVessels().add(vessel); ②
 vessel.setState(FermentationVessel.State.FERMENTING);
 return this;
}

① set the parent on the child

② add the child to the parent’s collection.

that is, explicitly update both sides of the relationship.

This generates this SQL:

13

INSERT INTO "batch"."Batch_vessels" ("id_OID","id_EID") VALUES (<0>,<0>)
UPDATE "batch"."Batch"
 SET "version"=<3>
 WHERE "id"=<0>
UPDATE "fvessel"."FermentationVessel"
 SET "state"=<'FERMENTING'>
 ,"version"=<2016-07-07 12:49:21.49>
 WHERE "id"=<0>

It doesn’t matter in these cases whether the association is mandatory or optional; it will be the
same SQL generated.

3.2. Mandatory Properties in Subtypes
If you have a hierarchy of classes then you need to decide which inheritance strategy to use.

• "table per hierarchy", or "rollup" (InheritanceStrategy.SUPERCLASS_TABLE)

whereby a single table corresponds to the superclass, and also holds the properties of the
subtype (or subtypes) being rolled up

• "table per class" (InheritanceStrategy.NEW_TABLE)

whereby there is a table for both superclass and subclass, in 1:1 correspondence

• "rolldown" (InheritanceStrategy.SUBCLASS_TABLE)

whereby a single table holds the properties of the subtype, and also holds the properties of its
supertype

In the first "rollup" case, we can have a situation where - logically speaking - the property is
mandatory in the subtype - but it must be mapped as nullable in the database because it is n/a for
any other subtypes that are rolled up.

In this situation we must tell JDO that the column is optional, but to Apache Isis we want to enforce
it being mandatory. This can be done using the @Property(optionality=Optionality.MANDATORY)
annotation.

For example:

@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.SUPER_TABLE)
public class SomeSubtype extends SomeSuperType {
 @javax.jdo.annotations.Column(allowsNull="true")
 @Property(optionality=Optionality.MANDATORY)
 @lombok.Getter @lombok.Setter
 private LocalDate date;
}

14

The @Property(optionality=…) annotation is equivalent to the older but still
supported @Optional annotation and @Mandatory annotations.

3.3. Mapping to a View
JDO/DataNucleus supports the ability to map the entity that is mapped to a view rather than a
database table. Moreover, DataNucleus itself can create/maintain this view.

One use case for this is to support use cases which act upon aggregate information. An example is
in the (non-ASF) Estatio application, which uses a view to define an "invoice run": a representatoin
of all pending invoices to be sent out for a particular shopping centre. (Note that example also
shows the entity as being "non-durable", but if the view is read/write then — I think — that this isn’t
necessary required).

For more on this topic, see the DataNucleus documentation.

15

https://github.com/estatio/estatio/blob/b77d0b03ec86463227ba90f8341299066ddba69f/estatioapp/module/lease/dom/src/main/java/org/estatio/dom/lease/invoicing/viewmodel/InvoiceSummaryForPropertyDueDateStatus.java#L57
http://github.com/estatio/estatio
http://www.datanucleus.org/products/datanucleus/jdo/mapping.html#schema_rdbms_views

Chapter 4. Database Schemas
In the same way that Java packages act as a namespace for domain objects, it’s good practice to map
domain entities to their own (database) schemas.

As of 1.9.0, all the (non-ASF) Incode Platform modules do this. For example:

@javax.jdo.annotations.PersistenceCapable(...
 schema = "isissecurity",
 table = "ApplicationUser")
public class ApplicationUser ... { ... }

results in a CREATE TABLE statement of:

CREATE TABLE isissecurity."ApplicationUser" (
 ...
)

while:

@javax.jdo.annotations.PersistenceCapable(...
 schema = "isisaudit",
 table="AuditEntry")
public class AuditEntry ... { ... }

similarly results in:

CREATE TABLE isisaudit."AuditEntry" (
 ...
)

If for some reason you don’t want to use schemas (though we strongly
recommend that you do), then note that you can override the @PersistenceCapable
annotation by providing XML metadata (the mappings.jdo file). See the section on
configuring DataNucleus Overriding Annotations for more details.

4.1. Listener to create schema
JDO/DataNucleus does not automatically create these schema objects, but it does provide a listener
callback API on the initialization of each class into the JDO metamodel.

16

http://platform.incode.org
../ugodn/ugodn.pdf#_ugodn_configuring

Actually, the above statement isn’t quite true. In DN 3.2.x (as used by Apache Isis
up to v1.8.0) there was no support for schemas. As of Apache Isis 1.9.0 and DN 4.0
there is now support. But we implemented this feature initially against DN 3.2.x,
and it still works, so for now we’ve decided to leave it in.

Therefore Apache Isis attaches a listener, CreateSchemaObjectFromClassMetadata, that checks for the
schema’s existence, and creates the schema if required.

The guts of its implementation is:

public class CreateSchemaObjectFromClassMetadata
 implements MetaDataListener,
 DataNucleusPropertiesAware {
 @Override
 public void loaded(final AbstractClassMetaData cmd) { ... }

 protected String buildSqlToCheck(final AbstractClassMetaData cmd) {
 final String schemaName = schemaNameFor(cmd);
 return String.format(
 "SELECT count(*) FROM INFORMATION_SCHEMA.SCHEMATA where SCHEMA_NAME =
'%s'", schemaName);
 }
 protected String buildSqlToExec(final AbstractClassMetaData cmd) {
 final String schemaName = schemaNameFor(cmd);
 return String.format("CREATE SCHEMA \"%s\"", schemaName);
 }
}

where MetaDataListener is the DataNucleus listener API:

public interface MetaDataListener {
 void loaded(AbstractClassMetaData cmd);
}

Although not formal API, the default CreateSchemaObjectFromClassMetadata has been designed to be
easily overrideable if you need to tweak it to support other RDBMS'. Any implementation must
implement org.datanucleus.metadata.MetaDataListener:

The implementation provided has has been tested for HSQLDB, PostgreSQL and MS SQL Server, and
is used automatically unless an alternative implementation is specified (as described in the section
below).

4.2. Alternative implementation
An alternative implementation can be registered and used through the following configuration
property:

17

isis.persistor.datanucleus.classMetadataLoadedListener=\

org.apache.isis.objectstore.jdo.datanucleus.CreateSchemaObjectFromClassMetadata

Because this pertains to the JDO Objectstore we suggest you put this configuration property in WEB-
INF/persistor_datanucleus.properties; but putting it in isis.properties will also work.

Any implementation must implement org.datanucleus.metadata.MetaDataListener. In many cases
simply subclassing from CreateSchemaObjectFromClassMetadata and overriding buildSqlToCheck(…)

and buildSqlToExec(…) should suffice.

If you do need more control, your implementation can also optionally implement
org.apache.isis.objectstore.jdo.datanucleus.DataNucleusPropertiesAware:

public interface DataNucleusPropertiesAware {
 public void setDataNucleusProperties(final Map<String, String> properties);
}

This provides access to the properties passed through to JDO/DataNucleus.

If you do extend Apache Isis' CreateSchemaObjectFromClassMetadata class for some
other database, please contribute back your improvements.

18

https://issues.apache.org/jira/browse/ISIS

Chapter 5. Hints and Tips
This chapter provides some solutions for problems we’ve encountered ourselves or have been
raised on the Apache Isis mailing lists.

See also hints-n-tips chapters in the:

• the Developers' guide

• the Wicket viewer guide

• the Restful Objects viewer guide

• the Datanucleus ObjectStore guide (this chapter)

• the Security guide

• the Beyond the Basics guide.

5.1. Overriding JDO Annotations
The JDO Objectstore (or rather, the underlying DataNucleus implementation) builds its own
persistence metamodel by reading both annotations on the class and also by searching for
metadata in XML files. The metadata in the XML files takes precedence over the annotations, and so
can be used to override metadata that is "hard-coded" in annotations.

In fact, JDO/DataNucleus provides two different XML files that have slightly different purposes and
capabilities:

• first, a .jdo file can be provided which - if found - completely replaces the annotations.

The idea here is simply to use XML as the means by which metadata is specified.

• second, an .orm file can be provided which - if found - provides individual overrides for a
particular database vendor.

The idea here is to accommodate for subtle differences in support for SQL between vendors. A
good example is the default schema for a table: dbo for SQL Server, public for HSQLDB, sys for
Oracle, and so on.

If you want to use the first approach (the .jdo file), you’ll find that you can download the effective
XML representation of domain entities using the downloadJdoMetadata mixin action available in
prototyping mode. This then needs to be renamed and placed in the appropriate location on the
classpath; see the DataNucleus documentation for details.

However, using this first approach does create a maintenance effort; if the domain entity’s class
structure changes over time, then the XML metadata file will need to be updated.

The second approach (using an .orm file) is therefore often more useful than the first, because the
metadata provided overrides rather than replaces the annotations (and annotations not overridden
continue to be honoured).

19

../dg/dg.pdf#_dg_hints-and-tips
../ugvw/ugvw.pdf#_ugvw_hints-and-tips
../ugvro/ugvro.pdf#_ugvro_hints-and-tips
../ugodn/ugodn.pdf#_ugodn_hints-and-tips
../ugsec/ugsec.pdf#_ugsec_hints-and-tips
../ugbtb/ugbtb.pdf#_ugbtb_hints-and-tips
../rgcms/rgcms.pdf#__rgcms_classes_mixins_Persistable_downloadJdoMetadata
http://www.datanucleus.org

A typical use case is to change the database schema for an entity. For example, as of 1.9.0 the
various (non-ASF) Incode Platform modules use schemas for each entity. For example, the
AuditEntry entity in the (non-ASF) Incode Platform's audit module is annotated as:

@javax.jdo.annotations.PersistenceCapable(
 identityType=IdentityType.DATASTORE,
 schema = "IsisAddonsAudit",
 table="AuditEntry")
public class AuditEntry {
 ...
}

This will map the AuditEntry class to a table "IsisAddonsAudit"."AuditEntry"; that is using a custom
schema to own the object.

Suppose though that for whatever reason we didn’t want to use a custom schema but would rather
use the default. Also suppose we are using SQL Server as our target database.

We can override the above annotation using a AuditEntry-sqlserver.orm file, placed in the same
package as the AuditEntry entity. For example:

AuditEntry-sqlserver.orm

<?xml version="1.0" encoding="UTF-8" ?>
<orm xmlns="http://xmlns.jcp.org/xml/ns/jdo/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jdo/orm
 http://xmlns.jcp.org/xml/ns/jdo/orm_3_0.xsd">

 <package name="org.isisaddons.module.audit.dom">
 <class name="AuditEntry"
 schema="isisaudit"
 table="AuditEntry">
 </class>
 </package>
</orm>

It’s also necessary to tell JDO/DataNucleus about which vendor is being used (sqlserver in the
example above). This is done using a configuration property:

isis.properties

isis.persistor.datanucleus.impl.datanucleus.Mapping=sqlserver

5.2. Subtype not fully populated
Taken from this thread on the Apache Isis users mailing list…

20

http://platform.incode.org
http://platform.incode.org
http://markmail.org/message/ovgai56uqgfgnrx7

If it seems that Apache Isis (or rather DataNucleus) isn’t fully populating domain entities (ie leaving
some properties as null), then check that your actions are not accessing the fields directly. Use
getters instead.

Properties of domain entities should always be accessed using getters. The only
code that should access to fields should be the getters themselves.

Why so? Because DataNucleus will potentially lazy load some properties, but to do this it needs to
know that the field is being requested. This is the purpose of the enhancement phase: the bytecode
of the original getter method is actually wrapped in code that does the lazy loading checking. But
hitting the field directly means that the lazy loading code does not run.

This error can be subtle: sometimes "incorrect" code that accesses the fields will seem to work. But
that will be because the field has been populated already, for whatever reason.

One case where you will find the issue highlighted is for subtype tables that have been mapped
using an inheritance strategy of NEW_TABLE, eg:

@javax.jdo.annotations.PersistenceCapable
@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.NEW_TABLE)
public class SupertypeEntity {
 ...
}

and then:

@javax.jdo.annotations.PersistenceCapable
@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.NEW_TABLE)
public class SubtypeEntity extends SupertypeEntity {
 ...
}

This will generate two tables in the database, with the primary key of the supertype table
propagated as a foreign key (also primary key) of the subtype table (sometimes called "table per
type" strategy). This means that DataNucleus might retrieve data from only the supertype table, and
the lazily load the subtype fields only as required. This is preferable to doing a left outer join from
the super- to the subtype tables to retrieve data that might not be needed.

On the other hand, if the SUPERCLASS_TABLE strategy (aka "table per hierarchy" or roll-up) or the
SUBCLASS_TABLE strategy (roll-down) was used, then the problem is less likely to occur because
DataNucleus would obtain all the data for any given instance from a single table.

Final note: references to other objects (either scalar references or in collections) in particular
require that getters rather than fields to be used to obtain them: it’s hopefully obvious that
DataNucleus (like all ORMs) should not and will not resolve such references (otherwise, where to
stop… and the whole database would be loaded into memory).

In summary, there’s just one rule: always use the getters, never the fields.

21

5.3. Java8
DataNucleus 4.x supports Java 7, but can also be used with Java 8, eg for streams support against
collections managed by DataNucleus.

Just include within <dependencies> of your dom module’s pom.xml:

<dependency>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-java8</artifactId>
 <version>4.2.0-release</version>t
</dependency>

The DataNucleus website includes a page listing version compatibility of these
extensions vis-a-vis the core DataNucleus platform.

5.4. Diagnosing n+1 Issues
(As of DN 4.1) set a break point in FetchRequest#execute(…):

The "Variables" pane will tell you which field(s) are being loaded, and the stack trace should help
explain why the field is required.

For example, it may be that an object is being loaded in a table and the initial query did not eagerly
load that field. In such a case, consider using fetch groups in the initial repository query to bring
the required data into memory with just one SQL call. See this hint/tip for further details.

22

http://www.datanucleus.org/products/accessplatform/compatibility.html
images/hints-n-tips/diagnosing-n-plus-1.png
ugodb.pdf#_ugodn_hints-and-tips_typesafe-queries-and-fetchgroups

5.5. Typesafe Queries and Fetch-groups
Fetch groups provide a means to hint to DataNucleus that it should perform a SQL join when
querying. A common use case is to avoid the n+1 issue.

(So far as I could ascertain) it isn’t possible to specify fetch group hints using JDOQL, but it is
possible to specify them using the programmatic API or using typesafe queries.

For example, here’s a JDOQL query:

@Query(
 name = "findCompletedOrLaterWithItemsByReportedDate", language = "JDOQL",
 value = "SELECT "
 + "FROM org.estatio.capex.dom.invoice.IncomingInvoice "
 + "WHERE items.contains(ii) "
 + " && (ii.reportedDate == :reportedDate) "
 + " && (approvalState != 'NEW' && approvalState != 'DISCARDED') "
 + "VARIABLES org.estatio.capex.dom.invoice.IncomingInvoiceItem ii "
),
public class IncomingInvoice ... { ... }

which normally would be used from a repository:

public List<IncomingInvoice> findCompletedOrLaterWithItemsByReportedDate(
 final LocalDate reportedDate) {
 return repositoryService.allMatches(
 new QueryDefault<>(
 IncomingInvoice.class,
 "findCompletedOrLaterWithItemsByReportedDate",
 "reportedDate", reportedDate));
}

This can be re-written as a type-safe query as follows:

23

public List<IncomingInvoice> findCompletedOrLaterWithItemsByReportedDate(final
LocalDate reportedDate) {

 final QIncomingInvoice ii = QIncomingInvoice.candidate();
 final QIncomingInvoiceItem iii = QIncomingInvoiceItem.variable("iii");

 final TypesafeQuery<IncomingInvoice> q =
 isisJdoSupport.newTypesafeQuery(IncomingInvoice.class);

 q.filter(
 ii.items.contains(iii)
 .and(iii.reportedDate.eq(reportedDate))
 .and(ii.approvalState.ne(IncomingInvoiceApprovalState.NEW))
 .and(ii.approvalState.ne(IncomingInvoiceApprovalState.DISCARDED)));
 final List<IncomingInvoice> incomingInvoices = Lists.newArrayList(q.executeList()
);
 q.closeAll();
 return incomingInvoices;
}

Now the IncomingInvoice has four fields that require eager loading. This can be specified by
defining a named fetch group:

@FetchGroup(
 name="seller_buyer_property_bankAccount",
 members={
 @Persistent(name="seller"),
 @Persistent(name="buyer"),
 @Persistent(name="property"),
 @Persistent(name="bankAccount")
 })
public class IncomingInvoice ... { ... }

This fetch group can then be used in the query using q.getFetchPlan().addGroup(…). Putting this all
together, we get:

24

public List<IncomingInvoice> findCompletedOrLaterWithItemsByReportedDate(final
LocalDate reportedDate) {

 final QIncomingInvoice ii = QIncomingInvoice.candidate();
 final QIncomingInvoiceItem iii = QIncomingInvoiceItem.variable("iii");

 final TypesafeQuery<IncomingInvoice> q =
 isisJdoSupport.newTypesafeQuery(IncomingInvoice.class);

 q.getFetchPlan().addGroup("seller_buyer_property_bankAccount"); ①

 q.filter(
 ii.items.contains(iii)
 .and(iii.reportedDate.eq(reportedDate))
 .and(ii.approvalState.ne(IncomingInvoiceApprovalState.NEW))
 .and(ii.approvalState.ne(IncomingInvoiceApprovalState.DISCARDED)));
 final List<IncomingInvoice> incomingInvoices = Lists.newArrayList(q.executeList()
);
 q.closeAll();
 return incomingInvoices;
}

① specify the fetch group to use.

25

	DataNucleus Object Store
	Table of Contents
	Chapter 1. DataNucleus Object Store
	1.1. Other Guides

	Chapter 2. Configuring DataNucleus
	2.1. Configuration Properties
	2.2. persistence.xml
	2.3. Eagerly Registering Entities
	2.4. Persistence by Reachability
	2.5. Using JNDI DataSource

	Chapter 3. JDO Mappings
	3.1. 1-m Bidirectional relationships
	3.2. Mandatory Properties in Subtypes
	3.3. Mapping to a View

	Chapter 4. Database Schemas
	4.1. Listener to create schema
	4.2. Alternative implementation

	Chapter 5. Hints and Tips
	5.1. Overriding JDO Annotations
	5.2. Subtype not fully populated
	5.3. Java8
	5.4. Diagnosing n+1 Issues
	5.5. Typesafe Queries and Fetch-groups

