
Testing

Table of Contents
1. Testing . 1

1.1. Other Guides . 1

2. Overview . 2

2.1. Unit tests vs Integ tests . 2

2.2. Integ tests vs BDD Specs . 2

2.3. Simulated UI (WrapperFactory) . 2

2.4. Dependency Injection . 3

2.5. Given/When/Then . 4

2.6. Fixture Management . 4

2.7. Fake data . 5

2.8. Feature Toggles . 5

3. Unit Test Support . 6

3.1. Contract Tests . 6

3.2. JMock Extensions . 9

3.3. SOAP Fake Endpoints . 11

3.4. Maven Configuration . 13

4. Integration Test Support . 15

4.1. Typical Usage . 15

4.2. Bootstrapping . 17

4.3. Wrapper Factory . 23

4.4. Maven Configuration . 27

5. BDD Spec Support . 28

5.1. How it works . 28

5.2. Key classes . 28

5.3. Writing a BDD spec . 29

5.4. BDD Tooling . 32

5.5. Maven Configuration . 32

6. Fixture Scripts . 34

6.1. API and Usage . 35

6.2. SudoService. 48

Chapter 1. Testing
If you are going to use Apache Isis for developing complex business-critical applications, then being
able to write automated tests for those applications becomes massively important. As such Apache
Isis treats the topic of testing very seriously. (Though we say it ourselves), the framework has
support that goes way above what is provided by other application frameworks.

This guide describes those features available to you for testing your Apache Isis application.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• DataNucleus object store

• Security

• Testing (this guide)

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)

1

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugvro.pdf
ugsec.pdf
ugbtb.pdf
rgant.pdf
rgsvc.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

Chapter 2. Overview

2.1. Unit tests vs Integ tests
We divide automated tests into two broad categories:

• unit tests exercise a single unit (usually a method) of a domain object, in isolation.

Dependencies of that object are mocked out. These are written by a developer and for a
developer; they are to ensure that a particular "cog in the machine" works correctly

• integration tests exercise the application as a whole, usually focusing on one particular business
operation (action).

These are tests that represent the acceptance criteria of some business story; their intent should
make sense to the domain expert (even if the domain expert is "non-technical")

To put it another way:


Integration tests help ensure that you are building the right system

Unit tests help ensure that you are building the system right.

2.2. Integ tests vs BDD Specs
We further sub-divide integration tests into:

• those that are implemented in Java and JUnit (we call these simply "integration tests")

Even if a domain expert understands the intent of these tests, the actual implementation will be
opaque to them. Also, the only output from the tests is a (hopefully) green CI job

• tests (or rather, specifications) that are implemented in a behaviour-driven design (BDD)
language such as Cucumber (we call these "BDD specs")

The natural language specification then maps down onto some glue code that is used to drive
the application. But the benefits of taking a BDD approach include the fact that your domain
expert will be able to read the tests/specifications, and that when you run the specs, you also get
documentation of the application’s behaviour ("living documentation").

It’s up to you whether you use BDD specs for your apps; it will depend on your development
process and company culture. But you if don’t then you certainly should write integration tests:
acceptance criteria for user stories should be automated!

2.3. Simulated UI (WrapperFactory)
When we talk about integration tests/specs here, we mean tests that exercise the domain object

2

https://cucumber.io/

logic, through to the actual database. But we also want the tests to exercise the app from the users’s
perspective, which means including the user interface.

For most other frameworks that would require having to test the application in a very heavy
weight/fragile fashion using a tool such as Selenium, driving a web browser to navigate . In this
regard though, Apache Isis has a significant trick up its sleeve. Because Apache Isis implements the
naked objects pattern, it means that the UI is generated automatically from the UI. This therefore
allows for other implementations of the UI.

The WrapperFactory domain service allows a test to wrap domain objects and thus to interact with
said objects "as if" through the UI:

If the test invokes an action that is disabled, then the wrapper will throw an appropriate exception.
If the action is ok to invoke, it delegates through.

What this means is that an Isis application can be tested end-to-end without having to deploy it onto
a webserver; the whole app can be tested while running in-memory. Although integration tests re
(necessarily) slower than unit tests, they are not any harder to write (in fact, in some respects they
are easier).

2.4. Dependency Injection
Isis provides autowiring dependency injection into every domain object. This is most useful when
writing unit tests; simply mock out the service and inject into the domain object.

There are a number of syntaxes supported, but the simplest is to use @javax.inject.Inject
annotation; for example:

@javax.inject.Inject
CustomerRepository customers;

Isis can inject into this even if the field has package-level (or even private) visibility. We
recommend that you use package-level visibility, though, so that your unit tests (in the same
package as the class under test) are able to inject mocks.

3

http://docs.seleniumhq.org/
rgsvc.pdf#_rgsvc_api_WrapperFactory

Isis does also support a couple of other syntaxes:

public void setCustomerRepository(CustomerRepository customers) { ... }

or

public void injectCustomerRepository(CustomerRepository customers) { ... }


Apache Isis also supports automatic dependency injection into integration tests;
just declare the service dependency in the usual fashion and it will be
automatically injected.

2.5. Given/When/Then
Whatever type of test/spec you are writing, we recommend you follow the given/when/then idiom:

• given the system is in this state (preconditions)

• when I poke it with a stick

• then it looks like this (postconditions)

A good test should be 5 to 10 lines long; the test should be there to help you reason about the
behaviour of the system. Certainly if the test becomes more than 20 lines it’ll be too difficult to
understand.

The "when" part is usually a one-liner, and in the "then" part there will often be only two or three
assertions that you want to make that the system has changed as it should.

For unit test the "given" part shouldn’t be too difficult either: just instantiate the class under test,
wire in the appropriate mocks and set up the expectations. And if there are too many mock
expectations to set up, then "listen to the tests" … they are telling you your design needs some work.

Where things get difficult though is the "given" for integration tests; which is the topic of the next
section…

2.6. Fixture Management
In the previous section we discussed using given/when/then as a form of organizing tests, and why
you should keep your tests small.

For integration tests though it can be difficult to keep the "given" short; there could be a lot of
prerequisite data that needs to exist before you can actually exercise your system. Moreover,
however we do set up that data, but we also want to do so in a way that is resilient to the system
changing over time.

The solution that Apache Isis provides is a domain service called Fixture Scripts, that defines a
pattern and supporting classes to help ensure that the "data setup" for your tests are reusable and

4

rgcms.pdf#_rgcms_classes_super_FixtureScripts

maintainable over time.

2.7. Fake data
In any given test there are often quite a few variables involved, to initialize the state of the objects,
or to act as arguments for invoking a method, or when asserting on post-conditions. Sometimes
those values are important (eg verifying that an `Order’s state went from PENDING to SHIPPED,
say), but often they aren’t (a customer’s name, for example) but nevertheless need to be set up
(especially in integration tests).

We want our tests to be easily understood, and we want the reader’s eye to be drawn to the values
that are significant and ignore those that are not.

One way to do this is to use random (or fake) values for any insignificant data. This in effect tells
the reader that "any value will do". Moreover, if it turns out that any data won’t do, and that there’s
some behaviour that is sensitive to the value, then the test will start to flicker, passing and then
failing depending on inputs. This is A Good Thing™.

Apache Isis does not, itself, ship with a fake data library. However, the Isis addons' fakedata
module (non-ASF) does provide exactly this capability.


Using fake data works very well with fixture scripts; the fixture script can invoke
the business action with sensible (fake/random) defaults, and only require that
the essential information is passed into it by the test.

2.8. Feature Toggles
Writing automated tests is just good development practice. Also good practice is developing on the
mainline (master, trunk); so that your continuous integration system really is integrating all code.
Said another way: don’t use branches!

Sometimes, though, a feature will take longer to implement than your iteration cycle. In such a
case, how do you use continuous integration to keep everyone working on the mainline without
revealing a half-implemented feature on your releases? One option is to use feature toggles.

Apache Isis does not, itself, ship with a feature toggle library. However, the Isis addons' togglz
module (non-ASF) does provide exactly this capability.

With all that said, let’s look in detail at the testing features provided by Apache Isis.

5

http://github.com/isisaddons/isis-module-fakedata
http://martinfowler.com/bliki/FeatureBranch.html
http://martinfowler.com/bliki/FeatureToggle.html
http://github.com/isisaddons/isis-module-togglz

Chapter 3. Unit Test Support
Isis Core provides a number of unit test helpers for you to use (if you wish) to unit test your domain
objects.

3.1. Contract Tests
Contract tests ensure that all instances of a particular idiom/pattern that occur within your
codebase are implemented correctly. You could think of them as being a way to enforce a certain
type of coding standard. Implementation-wise they use Reflections library to scan for classes.

3.1.1. SortedSets

This contract test automatically checks that all fields of type java.util.Collection are declared as
java.util.SortedSet. In other words, it precludes either java.util.List or java.util.Set from being
used as a collection.

For example, the following passes the contract test:

public class Department {
 private SortedSet<Employee> employees = new TreeSet<Employee>();
 ...
}

whereas this would not:

public class SomeDomainObject {
 private List<Employee> employees = new ArrayList<Employee>();
 ...
}

If using DataNucleus against an RDBMS (as you probably are) then we strongly recommend that
you implement this test, for several reasons:

• first, Sets align more closely to the relational model than do Lists. A List must have an
additional index to specify order.

• second, SortedSet is preferable to Set because then the order is well-defined and predictable (to
an end user, to the programmer).

The ObjectContracts utility class substantially simplifies the task of implementing Comparable in
your domain classes.

• third, if the relationship is bidirectional then JDO/Objectstore will automatically maintain the
relationship.

To use the contract test, subclass SortedSetsContractTestAbstract, specifying the root package to

6

https://code.google.com/p/reflections/
rgcms.pdf#_rgcms_classes_utility_ObjectContracts

search for domain classes.

For example:

public class SortedSetsContractTestAll extends SortedSetsContractTestAbstract {

 public SortedSetsContractTestAll() {
 super("org.estatio.dom");
 withLoggingTo(System.out);
 }
}

3.1.2. Bidirectional

This contract test automatically checks that bidirectional 1:m or 1:1 associations are being
maintained correctly (assuming that they follow the mutual registration pattern


(If using the JDO objectstore, then) there is generally no need to programmatically
maintain 1:m relationships (indeed it may introduce subtle errors). For more
details, see here. Also check out the templates in the developers' guide (live
templates for IntelliJ / editor templates for Eclipse) for further guidance.

For example, suppose that ParentDomainObject and ChildDomainObject have a 1:m relationship
(ParentDomainObject#children / ChildDomainObject#parent), and also PeerDomainObject has a 1:1
relationship with itself (PeerDomainObject#next / PeerDomainObject#previous).

The following will exercise these relationships:

public class BidirectionalRelationshipContractTestAll
 extends BidirectionalRelationshipContractTestAbstract {

 public BidirectionalRelationshipContractTestAll() {
 super("org.apache.isis.core.unittestsupport.bidir",
 ImmutableMap.<Class<?>,Instantiator>of(
 ChildDomainObject.class, new InstantiatorForChildDomainObject(),
 PeerDomainObject.class, new InstantiatorSimple
(PeerDomainObjectForTesting.class)
));
 withLoggingTo(System.out);
 }
}

The first argument to the constructor scopes the search for domain objects; usually this would be
something like "com.mycompany.dom".

The second argument provides a map of Instantiator for certain of the domain object types. This
has two main purposes. First, for abstract classes, it nominates an alternative concrete class to be
instantiated. Second, for classes (such as ChildDomainObject) that are Comparable and are held in a

7

ugfun.pdf#_ugfun_how-tos_entity-relationships_managed-1-to-m-bidirectional-relationships
ugfun.pdf#_ugfun_how-tos_entity-relationships_managed-1-to-m-bidirectional-relationships
dg.pdf#_dg_ide_intellij_live-templates
dg.pdf#_dg_ide_intellij_live-templates
dg.pdf#_dg_ide_eclipse_editor-templates

SortedSet), it provides the ability to ensure that different instances are unique when compared
against each other. If no Instantiator is provided, then the contract test simply attempts to
instantiates the class.

If any of the supporting methods (addToXxx(), removeFromXxx(), modifyXxx() or clearXxx()) are
missing, the relationship is skipped.

To see what’s going on (and to identify any skipped relationships), use the withLoggingTo() method
call. If any assertion fails then the error should be descriptive enough to figure out the problem
(without enabling logging).

The example tests can be found here.

3.1.3. Injected Services Method

It is quite common for some basic services to be injected in a project-specific domain object
superclass; for example a ClockService might generally be injected everywhere:

public abstract class EstatioDomainObject {
 @javax.inject.Inject
 protected ClockService clockService;
}

If a subclass inadvertantly overrides this method and provides its own ClockService field, then the
field in the superclass will never initialized. As you might imagine, NullPointerExceptions could
then arise.

This contract test automatically checks that the injectXxx(…) method, to allow for injected services,
is not overridable, ie final.


This contract test is semi-obsolete; most of the time you will want to use
@javax.inject.Inject on fields rather than the injectXxx() method. The feature
dates from a time before Apache Isis supported the @Inject annotation.

To use the contract test, , subclass SortedSetsContractTestAbstract, specifying the root package to
search for domain classes.

For example:

public class InjectServiceMethodMustBeFinalContractTestAll extends
InjectServiceMethodMustBeFinalContractTestAbstract {

 public InjectServiceMethodMustBeFinalContractTestAll() {
 super("org.estatio.dom");
 withLoggingTo(System.out);
 }
}

8

https://github.com/apache/isis/tree/master/core/unittestsupport/src/test/java/org/apache/isis/core/unittestsupport/bidir

3.1.4. Value Objects

The ValueTypeContractTestAbstract automatically tests that a custom value type implements
equals() and hashCode() correctly.

For example, testing JDK’s own java.math.BigInteger can be done as follows:

public class ValueTypeContractTestAbstract_BigIntegerTest extends
ValueTypeContractTestAbstract<BigInteger> {

 @Override
 protected List<BigInteger> getObjectsWithSameValue() {
 return Arrays.asList(new BigInteger("1"), new BigInteger("1"));
 }

 @Override
 protected List<BigInteger> getObjectsWithDifferentValue() {
 return Arrays.asList(new BigInteger("2"));
 }
}

The example unit tests can be found here.

3.2. JMock Extensions
As noted earlier, for unit tests we tend to use JMock as our mocking library. The usual
given/when/then format gets an extra step:

• given the system is in this state

• expecting these interactions (set up the mock expectations here)

• when I poke it with a stick

• then these state changes and interactions with Mocks should have occurred.

If using JMock then the interactions (in the "then") are checked automatically by a JUnit rule.
However, you probably will still have some state changes to assert upon.

9

https://github.com/apache/isis/tree/master/core/unittestsupport/src/test/java/org/apache/isis/core/unittestsupport/value
http://www.jmock.org



Distinguish between queries vs mutators

For mock interactions that simply retrieve some data, your test should not need
to verify that it occurred. If the system were to be refactored and starts caching
some data, you don’t really want your tests to start breaking because they are no
longer performing a query that once they did. If using JMock API this means
using the allowing(..) method to set up the expectation.

On the other hand mocks that mutate the state of the system you probably should
assert have occurred. If using JMock this typically means using the oneOf(…)

method.

For more tips on using JMock and mocking in general, check out the GOOS book,
written by JMock’s authors, Steve Freeman and Nat Pryce and also Nat’s blog.

Apache Isis' unit test support provides JUnitRuleMockery2 which is an extension to the JMock's
JunitRuleMockery. It provides a simpler API and also providing support for autowiring.

For example, here we see that the class under test, an instance of
CollaboratingUsingSetterInjection, is automatically wired up with its Collaborator:

public class JUnitRuleMockery2Test_autoWiring_setterInjection_happyCase {

 @Rule
 public JUnitRuleMockery2 context = JUnitRuleMockery2.createFor(Mode
.INTERFACES_AND_CLASSES);

 @Mock
 private Collaborator collaborator;

 @ClassUnderTest
 private CollaboratingUsingSetterInjection collaborating;

 @Test
 public void wiring() {
 assertThat(collaborating.collaborator, is(not(nullValue())));
 }
}


Isis also includes (and automatically uses) a Javassist-based implementation of
JMock’s ClassImposteriser interface, so that you can mock out concrete classes as
well as interfaces. We’ve provided this rather than JMock’s own cglib-based
implementation (which is problematic for us given its own dependencies on asm).

The example tests can be found here

10

http://www.growing-object-oriented-software.com/
http://natpryce.com/articles.html
http://www.jmock.org/
http://www.javassist.org
http://www.jmock.org/mocking-classes.html
http://asm.ow2.org/
https://github.com/apache/isis/tree/master/core/unittestsupport/src/test/java/org/apache/isis/core/unittestsupport/jmocking

3.3. SOAP Fake Endpoints
No man is an island, and neither are most applications. Chances are that at some point you may
need to integrate your Apache Isis application to other external systems, possibly using old-style
SOAP web services. The SOAP client in this case could be a domain service within your app, or it
might be externalized, eg invoked through a scheduler or using Apache Camel.

While you will want to (of course) perform manual system testing/UAT with a test instance of that
external system, it’s also useful to be able to perform unit testing of your SOAP client component.

The SoapEndpointPublishingRule is a simple JUnit rule that allows you to run a fake SOAP endpoint
within an unit test.


The (non-ASF) Isis addons' publishmq module provides a full example of how to
integrate and test an Apache Isis application with a (faked out) external system.

3.3.1. SoapEndpointPublishingRule

The idea behind this rule is that you write a fake server endpoint that implements the same WSDL
contract as the "real" external system does, but which also exposes additional API to specify
responses (or throw exceptions) from SOAP calls. It also typically records the requests and allows
these to be queried.

In its setup your unit test and gets the rule to instantiate and publish that fake server endpoint, and
then obtains a reference to that server endpoint. It also instantiates the SOAP client, pointing it at
the address (that is, a URL) that the fake server endpoint is running on. This way the unit test has
control of both the SOAP client and server: the software under test and its collaborator.

In the test methods your unit test sets up expectations on your fake server, and then exercises the
SOAP client. The SOAP client calls the fake server, which then responds accordingly. The test can
then assert that all expected interactions have occurred.

So that tests don’t take too long to run, the rule puts the fake server endpoints onto a thread-local.
Therefore the unit tests should clear up any state on the fake server endpoints.

Your unit test uses the rule by specifying the endpoint class (must have a no-arg constructor):

11

http://camel.apache.org
http://github.com/isisaddons/isis-module-publishmq

public class FakeExternalSystemEndpointRuleTest {
 @Rule
 public SoapEndpointPublishingRule serverRule =
 new SoapEndpointPublishingRule(FakeExternalSystemEndpoint.class); ①
 private FakeExternalSystemEndpoint fakeServerEndpoint;
 private DemoObject externalSystemContract; ②
 @Before
 public void setUp() throws Exception {
 fakeServerEndpoint =
 serverRule.getEndpointImplementor(FakeExternalSystemEndpoint.class); ③
 final String endpointAddress =
 serverRule.getEndpointAddress(FakeExternalSystemEndpoint.class); ④
 final DemoObjectService externalSystemService = ⑤
 new DemoObjectService(ExternalSystemWsdl.getWsdl()); ⑥
 externalSystemContract = externalSystemService.getDemoObjectOverSOAP();
 BindingProvider provider = (BindingProvider) externalSystemContract;
 provider.getRequestContext().put(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 endpointAddress)
);
 }
 @Test
 public void happy_case() throws Exception {
 // given
 final Update update = new Update(); ⑦
 ...
 // expect
 final UpdateResponse response = new UpdateResponse(); ⑧
 ...
 fakeServerEndpoint.control().setResponse(updateResponse);
 // when
 PostResponse response = externalSystemContract.post(update); ⑨
 // then
 final List<Update> updates = ⑩
 fakeServerEndpoint.control().getUpdates();
 ...
 }
}

① specify the class that implements the endpoint (must have a no-arg constructor)

② the SOAP contract as defined in WSDL and generated by wsdl2java

③ get hold of the fake server-side endpoint from the rule…

④ … and its endpoint address

⑤ use factory (also generated by wsdl2java) to create client-side endpoint

⑥ getWsdl() is a utility method to return a URL for the WSDL (eg from the classpath)

⑦ create a request object in order to invoke the SOAP web service

⑧ instruct the fake server endpoint how to respond

12

⑨ invoke the web service

⑩ check the fake server endpoint was correctly invoked etc.

The rule can also host multiple endpoints; just provide multiple classes in the constructor:

@Rule
public SoapEndpointPublishingRule serverRule =
 new SoapEndpointPublishingRule(
 FakeCustomersEndpoint.class,
 FakeOrdersEndpoint.class,
 FakeProductsEndpoint.class);

To lookup a particular endpoint, specify its type:

FakeProductsEndpoint fakeProductsServerEndpoint =
 serverRule.getPublishedEndpoint(FakeProductsEndpoint.class);

The endpoint addresses that the server endpoints run on are determined automatically. If you
want more control, then you can call one of SoapEndpointPublishingRule's overloaded constructors,
passing in one or more SoapEndpointSpec instances.

3.3.2. XML Marshalling Support

Apache Isis' unit testing support also provides helper JaxbUtil and JaxbMatchers classes. These are
useful if you have exampler XML-serialized representations of the SOAP requests and response
payloads and want to use these within your tests.

3.4. Maven Configuration
Apache Isis' unit test support is automatically configured if you use the SimpleApp archetype. To
set it up manually, update the pom.xml of your domain object model module:

<dependency>
 <groupId>org.apache.isis.core</groupId>
 <artifactId>isis-core-unittestsupport</artifactId>
 <scope>test</scope> ①
</dependency>

① Normally test; usual Maven scoping rules apply.

We also recommend that you configure the maven-surefire-plugin to pick up the following class
patterns:

13

ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.10</version>
 <configuration>
 <includes>
 <include>**/*Test.java</include>
 <include>**/*Test_*.java</include>
 <include>**/*Spec*.java</include>
 </includes>
 <excludes>
 <exclude>**/Test*.java</exclude>
 <exclude>**/*ForTesting.java</exclude>
 <exclude>**/*Abstract*.java</exclude>
 </excludes>
 <useFile>true</useFile>
 <printSummary>true</printSummary>
 <outputDirectory>${project.build.directory}/surefire-reports</outputDirectory>
 </configuration>
</plugin>

14

Chapter 4. Integration Test Support
As discussed in the introductory overview of this chapter, Apache Isis allows you to integration test
your domain objects from within JUnit. There are several parts to this:

• configuring the Apache Isis runtime so it can be bootstrapped (mostly boilerplate)

• defining a base class to perform said bootstrapping

• using fixture scripts to set up the app

• using WrapperFactory so that the UI can be simulated.

We’ll get to all that shortly, but let’s start by taking a look at what a typical integration test looks
like.

4.1. Typical Usage
This example adapted from the Isis addons' todoapp (non-ASF). The code we want to test
(simplified) is:

public class ToDoItem ... {

 private boolean complete;
 @Property(editing = Editing.DISABLED)
 public boolean isComplete() {
 return complete;
 }
 public void setComplete(final boolean complete) {
 this.complete = complete;
 }

 @Action()
 public ToDoItem completed() {
 setComplete(true);
 ...
 return this;
 }
 public String disableCompleted() {
 return isComplete() ? "Already completed" : null;
 }
 ...
}

We typically put the bootstrapping of Apache Isis into a superclass (AbstractToDoIntegTest below),
then subclass as required.

For this test (of the "completed()" action) we need an instance of a ToDoItem that is not yet complete.
Here’s the setup:

15

http://github.com/isisaddons/isis-app-todoapp

public class ToDoItemIntegTest extends AbstractToDoIntegTest {

 @Inject
 FixtureScripts fixtureScripts; ①
 @Inject
 ToDoItems toDoItems; ②
 ToDoItem toDoItem; ③

 @Before
 public void setUp() throws Exception {
 RecreateToDoItemsForCurrentUser fixtureScript = ④
 new RecreateToDoItemsForCurrentUser();
 fixtureScripts.runFixtureScript(fixtureScript, null);
 final List<ToDoItem> all = toDoItems.notYetComplete(); ⑤
 toDoItem = wrap(all.get(0)); ⑥
 }
 ...
}

① the FixtureScripts domain service is injected, providing us with the ability to run fixture scripts

② likewise, an instance of the ToDoItems domain service is injected. We’ll use this to lookup…

③ the object under test, held as a field

④ the fixture script for this test; it deletes all existing todo items (for the current user only) and
then recreates them

⑤ we lookup one of the just-created todo items…

⑥ and then wrap it so that our interactions with it are as if through the UI

The following code tests the happy case, that a not-yet-completed ToDoItem can be completed by
invoking the completed() action:

public class ToDoItemIntegTest ... {
 ...
 public static class Completed extends ToDoItemIntegTest { ①
 @Test
 public void happyCase() throws Exception {
 // given
 assertThat(toDoItem.isComplete()).isFalse(); ②
 // when
 toDoItem.completed();
 // then
 assertThat(toDoItem.isComplete()).isTrue();
 }
 ...
 }
}

① the idiom we follow is to use nested static classes to identify the class responsibility being tested

16

rgcms.pdf#_rgcms_classes_super_FixtureScripts

② the todoapp uses AssertJ.

What about when a todo item is already completed? The disableCompleted() method in the class
says that it shouldn’t be allowed (the action would be greyed out in the UI with an appropriate
tooltip). The following test verifies this:

 @Test
 public void cannotCompleteIfAlreadyCompleted() throws Exception {
 // given
 unwrap(toDoItem).setComplete(true); ①
 // expect
 expectedExceptions.expectMessage("Already completed"); ②
 // when
 toDoItem.completed();
 }

① we unwrap the domain object in order to set its state directly

② the expectedExceptions JUnit rule (defined by a superclass) verifies that the appropiate
exception is indeed thrown (in the "when")

And what about the fact that the underlying "complete" property is disabled (the @Disabled
annotation?). If the ToDoItem is put into edit mode in the UI, the complete checkbox should remain
read-only. Here’s a verify similar test that verifies this also:

 @Test
 public void cannotSetPropertyDirectly() throws Exception {
 // expect
 expectedExceptions.expectMessage("Always disabled"); ①
 // when
 toDoItem.setComplete(true);
 }

① again we use the exceptedExceptions rule.

4.2. Bootstrapping
Integration tests instantiate an Apache Isis "runtime" (as a singleton) within a JUnit test. Because
(depending on the size of your app) it takes a little time to bootstrap Apache Isis, the framework
caches the runtime on a thread-local from one test to the next.

Nevertheless, we do need to bootstrap the runtime for the very first test.

As of 1.9.0 the bootstrapping of integration tests and webapps has been simplified through the
AppManifest class. Since this isn’t mandatory, for now we present both techniques.

The example code in this section is taken from the app generated by the SimpleApp archetype.

17

http://github.com/isisaddons/isis-app-todoapp
http://joel-costigliola.github.io/assertj
http://junit.org/apidocs/org/junit/rules/ExpectedException.html
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

4.2.1. System Initializer

The bootstrapping itself is performed by a "system initializer" class. This is responsible for
instantiating the Apache Isis runtime, and binding it to a thread-local.

1.13.0 (Improved intent)

As of 1.13.0, the IsisConfigurationForJdoIntegTests (which provides a number of configuration
settings specifically for running integration tests) can be removed; instead all configuration
properties can be defined through the AppManifest:

For example:

public class DomainAppSystemInitializer {
 public static void initIsft() {
 IsisSystemForTest isft = IsisSystemForTest.getElseNull();
 if(isft == null) {
 isft = new IsisSystemForTest.Builder()
 .withLoggingAt(org.apache.log4j.Level.INFO)
 .with(new DomainAppAppManifest() {
 @Override
 public Map<String, String> getConfigurationProperties() {
 final Map<String, String> map = Maps.newHashMap();
 Util.withJavaxJdoRunInMemoryProperties(map);
 Util.withDataNucleusProperties(map);
 Util.withIsisIntegTestProperties(map);
 return map;
 }
 })
 .build();
 isft.setUpSystem();
 IsisSystemForTest.set(isft);
 }
 }
}

While the code is slightly longer than previously, the responsibilities for returning the
configuration properties to use for the test now reside in a single location. The new
AppManifest.Util class provides the helper methods to actually add in the appropriate config
properties.

1.9.0 (AppManifest)

As of 1.9.0, the code (using AppManifest) is:

18

public class DomainAppSystemInitializer {
 public static void initIsft() {
 IsisSystemForTest isft = IsisSystemForTest.getElseNull();
 if(isft == null) {
 isft = new IsisSystemForTest.Builder()
 .withLoggingAt(org.apache.log4j.Level.INFO)
 .with(new DomainAppAppManifest())
 .with(new IsisConfigurationForJdoIntegTests())
 .build()
 .setUpSystem();
 IsisSystemForTest.set(isft);
 }
 }
}

where DomainAppAppManifest in turn is defined as:

public class DomainAppAppManifest implements AppManifest {
 @Override
 public List<Class<?>> getModules() {
 return Arrays.asList(
 domainapp.dom.DomainAppDomainModule.class,
 domainapp.fixture.DomainAppFixtureModule.class,
 domainapp.app.DomainAppAppModule.class
);
 }
 ...
}

Further details on bootstrapping with the AppManifest can be found in the reference guide.

1.8.0 and earlier

Prior to 1.9.0, the services and entities had to be specified in two separate locations. The suggested
way to do this was to introduce a subclass of the IsisSystemForTest.Builder class:

19

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

private static class DomainAppSystemBuilder extends IsisSystemForTest.Builder {
①
 public DomainAppSystemBuilder() {
 withLoggingAt(org.apache.log4j.Level.INFO);
 with(testConfiguration());
 with(new DataNucleusPersistenceMechanismInstaller());
②
 withServicesIn("domainapp");
③
 }
 private static IsisConfiguration testConfiguration() {
 final IsisConfigurationForJdoIntegTests testConfiguration =
 new IsisConfigurationForJdoIntegTests();
④
 testConfiguration.addRegisterEntitiesPackagePrefix("domainapp.dom.modules");
⑤
 return testConfiguration;
 }
}

① subclass the framework-provided IsisSystemForTest.Builder.

② equivalent to isis.persistor=datanucleus in isis.properties

③ specify the isis.services key in isis.properties (where "domainapp" is the base package for all
classes within the app)

④ IsisConfigurationForJdoIntegTests has pre-canned configuration for using an in-memory
HSQLDB and other standard settings; more on this below.

⑤ equivalent to isis.persistor.datanucleus.RegisterEntities.packagePrefix key (typically in
persistor_datanucleus.properties)

This builder could then be used within the system initializer:

public class DomainAppSystemInitializer {
 public static void initIsft() {
 IsisSystemForTest isft = IsisSystemForTest.getElseNull();
 if(isft == null) {
 isft = new DomainAppSystemBuilder() ①
 .build()
 .setUpSystem();
 IsisSystemForTest.set(isft); ②
 }
 }
 private static class DomainAppSystemBuilder
 extends IsisSystemForTest.Builder { ... }
}

① instantiates and initializes the Apache Isis runtime (the IsisSystemForTest class)

② binds the runtime to a thread-local.

20

IsisConfigurationForJdoIntegTests

Integration tests are configured programmatically, with a default set of properties to bootstrap the
JDO/DataNucleus objectstore using an HSQLDB in-memory database.

To remove a little bit of boilerplate, the IsisConfigurationForJdoIntegTests class (in the
org.apache.isis.objectstore.jdo.datanucleus package) can be used to bootstrap the application. If
necessary, this class can be subclassed to override these defaults.

Table 1. Default Configuration Properties for Integration Tests

Property Value Description

isis.persistor.datanucleus.imp
l.
javax.jdo.option.ConnectionURL

jdbc:hsqldb:me
m:test

JDBC URL

isis.persistor.datanucleus.imp
l.
javax.jdo.option.ConnectionDri
verName

org.hsqldb.jdbc
Driver

JDBC Driver

isis.persistor.datanucleus.imp
l.
javax.jdo.option.ConnectionUse
rName

sa Username

isis.persistor.datanucleus.imp
l.
javax.jdo.option.ConnectionPas
sword

<empty string> Password

isis.persistor.datanucleus.imp
l.
datanucleus.schema.autoCreateA
ll

true Recreate DB for each test run (an in-memory
database)

isis.persistor.datanucleus.imp
l.
datanucleus.schema.validateAll

false Disable validations (minimize bootstrap time)

isis.persistor.datanucleus.imp
l.
datanucleus.persistenceByReach
abilityAtCommit

false As per WEB-
INF/persistor_datanucleus.properties

isis.persistor.datanucleus.imp
l.
datanucleus.identifier.case

MixedCase As per WEB-
INF/persistor_datanucleus.properties

isis.persistor.datanucleus.imp
l.
datanucleus.cache.level2.type

none As per WEB-
INF/persistor_datanucleus.properties

isis.persistor.datanucleus.imp
l.
datanucleus.cache.level2.mode

ENABLE_SELE
CTIVE

As per WEB-
INF/persistor_datanucleus.properties

21

Property Value Description

isis.persistor.datanucleus.
install-fixtures

true Automatically install any fixtures that might
have been registered

isis.persistor.
enforceSafeSemantics

false

isis.deploymentType server_prototy
pe

4.2.2. Abstract Class

We recommend defining a base class for all your other classes to integration classes to inherit from.
The main responsibility of this class is tocall the system initializer, described earlier. We only need
the initialization to be performed once, so this call is performed in a @BeforeClass hook.

The code below shows the general form:

public abstract class DomainAppIntegTest {
 @BeforeClass
 public static void initClass() {
 org.apache.log4j.PropertyConfigurator.configure("logging.properties"); ①
 DomainAppSystemInitializer.initIsft(); ②
 new ScenarioExecutionForIntegration(); ③
 }
}

① ensure that logging messages don’t get swallowed

② initialize the Apache Isis runtime

③ primarily exists to support the writing of BDD specifications, but also enables finer-grained
management of sessions/transactions (discussed below).

IntegrationTestAbstract

In fact, we recommend that your base class inherit from Apache Isis' IntegrationTestAbstract class:

public abstract class DomainAppIntegTest extends IntegrationTestAbstract {
 ...
}

Although not mandatory, this provides a number of helper/convenience methods and JUnit rules:

22

 @Rule
 public IsisTransactionRule isisTransactionRule = ①
 new IsisTransactionRule();
 @Rule
 public JUnitRuleMockery2 context = ②
 JUnitRuleMockery2.createFor(Mode.INTERFACES_AND_CLASSES);
 @Rule
 public ExpectedException expectedExceptions = ③
 ExpectedException.none();
 @Rule
 public ExceptionRecognizerTranslate exceptionRecognizerTranslations = ④
 ExceptionRecognizerTranslate.create();

① ensures an Apache Isis session/transaction running for each test

② sets up a JMock context (using Apache Isis' extension to JMock as described in JMock Extensions.

③ standard JUnit rule for writing tests that throw exceptions

④ to capture messages that require translation, as described in i18 support.

All of these rules could be inlined in your own base class; as we say, they are a convenience.

The IntegrationTestAbstract also provides a number of helper/convenience methods, though most
of these have been deprecated because the functionality they expose is now readily accessible
through various domain services; most notably these are:

• WrapperFactory

to wrap objects simulating interaction through the user interface)

• TransactionService

most commonly used to commit changes after the fixture setup) and,

• SessionManagementService

for tests that check interactions over multiple separate sessions.

4.3. Wrapper Factory
The WrapperFactory service is responsible for wrapping a domain object in a dynamic proxy, of the
same type as the object being proxied. And the role of this wrapper is to simulate the UI.


WrapperFactory uses javassist to perform its magic; this is the same technology
that ORMs such as Hibernate use to manage lazy loading/dirty tracking
(DataNucleus uses a different mechanism).

It does this by allowing through method invocations that would be allowed if the user were
interacting with the domain object through one of the viewers, but throwing an exception if the
user attempts to interact with the domain object in a way that would not be possible if using the UI.

23

ugbtb.pdf#_ugbtb_i18n
rgsvc.pdf#_rgsvc_api_WrapperFactory
rgsvc.pdf#_rgsvc_api_TransactionService
rgsvc.pdf#_rgsvc_api_SessionManagementService
rgsvc.pdf#_rgsvc_api_WrapperFactory
http://www.javassist.org
http://hibernate.org/

The mechanics are as follows:

1. the integration test calls the WrapperFactory to obtain a wrapper for the domain object under
test. This is usually done in the test’s setUp() method.

2. the test calls the methods on the wrapper rather than the domain object itself

3. the wrapper performs a reverse lookup from the method invoked (a regular
java.lang.reflect.Method instance) into the Apache Isis metamodel

4. (like a viewer), the wrapper then performs the "see it/use it/do it" checks, checking that the
member is visible, that it is enabled and (if there are arguments) that the arguments are valid

5. if the business rule checks pass, then the underlying member is invoked. Otherwise an
exception is thrown.

The type of exception depends upon what sort of check failed. It’s straightforward enough: if the
member is invisible then a HiddenException is thrown; if it’s not usable then you’ll get a
DisabledException, if the args are not valid then catch an InvalidException.

Let’s look in a bit more detail at what the test can do with the wrapper.

4.3.1. Wrapping and Unwrapping

Wrapping a domain object is very straightforward; simply call WrapperFactory#wrap(…).

For example:

Customer customer = ...;
Customer wrappedCustomer = wrapperFactory.wrap(wrappedCustomer);

Going the other way — getting hold of the underlying (wrapped) domain object — is just as easy;
just call WrapperFactory#unwrap(…).

For example:

24

Customer wrappedCustomer = ...;
Customer customer = wrapperFactory.unwrap(wrappedCustomer);

If you prefer, you also can get the underlying object from the wrapper itself, by downcasting to
WrappingObject and calling __isis_wrapped() method:

Customer wrappedCustomer = ...;
Customer customer = (Customer)((WrappingObject)wrappedCustomer).__isis_wrapped());

We’re not sure that’s any easier (in fact we’re certain it looks rather obscure). Stick with calling
unwrap(…)!

4.3.2. Using the wrapper

As the wrapper is intended to simulate the UI, only those methods that correspond to the "primary"
methods of the domain object’s members are allowed to be called. That means:

• for object properties the test can call the getter or setter method

• for object collections the test can call the getter.

If there is a supporting addTo…() or removeFrom…() method, then these can be called. It can also
call add(…) or remove(…) on the collection (returned by the gettter) itself.


In this respect the wrapper is more functional than the Wicket viewer (which
does not expose the ability to mutate collections directly).

• for object actions the test can call the action method itself.

As a convenience, we also allow the test to call any default…(),choices…() or autoComplete…()

method. These are often useful for obtaining a valid value to use.

What the test can’t call is any of the remaining supporting methods, such as hide…(), disable…() or
validate…(). That’s because their value is implied by the exception being thrown.

The wrapper does also allow the object’s title() method or its toString() , however this is little use
for objects whose title is built up using the @Title annotation. Instead, we recommend that your
test verifies an object’s title by calling DomainObjectContainer#titleOf(…) method.

4.3.3. Firing Domain Events

As well as enforcing business rules, the wrapper has another important feature, namely that it will
cause domain events to be fired.

For example, if we have an action annotated with @Action(domainEvent=…):

25

ugvw.pdf

public class ToDoItem ... {
 @Action(
 domainEvent =CompletedEvent.class
)
 public ToDoItem completed() { ... }
 ...
}

then invoking the action through the proxy will cause the event (CompletedEvent above) to be fired
to any subscribers. A test might therefore look like:

@Inject
private EventBusService eventBusService; ①

@Test
public void subscriberReceivesEvents() throws Exception {

 // given
 final ToDoItem.CompletedEvent[] evHolder = new ToDoItem.CompletedEvent[1]; ②
 eventBusService.register(new Object() {
 @Subscribe
 public void on(final ToDoItem.CompletedEvent ev) { ③
 evHolder[0] = ev;
 }
 });

 // when
 toDoItem.completed(); ④

 // then
 then(evHolder[0].getSource()).isEqualTo(unwrap(toDoItem)); ⑤
 then(evHolder[0].getIdentifier().getMemberName()).isEqualTo("completed");
}

① inject EventBusService into this test

② holder for subscriber to capture event to

③ subscriber’s callback, using the guava subscriber syntax

④ invoking the domain object using the wrapper

⑤ assert that the event was populated

The wrapper will also fire domain events for properties (if annotated with
@Property(domainEvent=…)) or collections (if annotated with @Collection(domainEvent=…)).


It isn’t possible to use the WrapperFactory in a unit test, because there needs to be
a running instance of Apache Isis that holds the metamodel.

26

rgsvc.pdf#_rgsvc_api_EventBusService

4.4. Maven Configuration
Apache Isis' integration test support is automatically configured if you use the SimpleApp
archetype. To set it up manually, update the pom.xml of your domain object model module:

<dependency>
 <groupId>org.apache.isis.core</groupId>
 <artifactId>isis-core-integtestsupport</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.isis.core</groupId>
 <artifactId>isis-core-wrapper</artifactId>
</dependency>

We also recommend that you configure the maven-surefire-plugin to pick up the following class
patterns:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.10</version>
 <configuration>
 <includes>
 <include>**/*Test.java</include>
 <include>**/*Test_*.java</include>
 <include>**/*Spec*.java</include>
 </includes>
 <excludes>
 <exclude>**/Test*.java</exclude>
 <exclude>**/*ForTesting.java</exclude>
 <exclude>**/*Abstract*.java</exclude>
 </excludes>
 <useFile>true</useFile>
 <printSummary>true</printSummary>
 <outputDirectory>${project.build.directory}/surefire-reports</outputDirectory>
 </configuration>
</plugin>

27

ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

Chapter 5. BDD Spec Support
Behaviour-driven design (BDD) redefines testing not as an after-the-fact "let’s check the system
works", but rather as a means to work with the domain expert to (a) specify the behaviour of the
feature before starting implementation, and (b) provide a means that the domain expert can verify
the feature after it has been implemented.

Since domain experts are usually non-technical (at least, they are unlikely to be able to read or
want to learn how to read JUnit/Java code), then applying BDD typically requires writing
specifications in using structured English text and (ASCII) tables. The BDD tooling parses this text
and uses it to actually interact with the system under test. As a byproduct the BDD frameworks
generate readable output of some form; this is often an annotated version of the original
specification, marked up to indicate which specifications passed, which have failed. This readable
output is a form of "living documentation"; it captures the actual behaviour of the system, and so is
guaranteed to be accurate.

There are many BDD tools out there; Apache Isis provides an integration with Cucumber JVM (see
also the github site):

5.1. How it works
At a high level, here’s how Cucumber works

• specifications are written in the Gherkin DSL, following the "given/when/then" format.

• Cucumber-JVM itself is a JUnit runner, and searches for feature files on the classpath.

• These in turn are matched to step definitions through regular expressions.

It is the step definitions (the "glue") that exercise the system.

The code that goes in step definitions is broadly the same as the code that goes in an integration test
method. One benefit of using step definitions (rather than integration tests) is that the step
definitions are reusable across scenarios, so there may be less code overall to maintain. For
example, if you have a step definition that maps to "given an uncompleted todo item", then this can
be used for all the scenarios that start with that as their precondition.

5.2. Key classes
There are some key framework classes that make up the spec support; these are discussed below.

 some of these are also used by Apache Isis' Integration Test support.

5.2.1. IsisSystemForTest

The IsisSystemForTest class allows a complete running instance of Apache Isis to be bootstrapped
(with the JDO objectstore); this is then held on a a ThreadLocal from one test to another.

Typically bootstrapping code is used to lazily instantiate the IsisSystemForTest once and once only.

28

http://en.wikipedia.org/wiki/Behavior-driven_development
https://cucumber.io/docs/reference/jvm#java
https://github.com/cucumber/cucumber-jvm
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/cucumber/cucumber/wiki/Given-When-Then
https://github.com/cucumber/cucumber/wiki/Feature-Introduction
https://github.com/cucumber/cucumber/wiki/Step-Definitions

The mechanism for doing this is line-for-line identical in both BDD step defs and integration tests.

5.2.2. ScenarioExecution

The ScenarioExecution provides a context for a scenario that is being executed. It is Cucumber that
determines which step definitions are run, and in which order, and so state cannot be passed
between step definitions using local variables or instance variables. Instead the ScenarioExecution
acts like a hashmap, allowing each step to put data (eg "given an uncompleted todoitem") into the
map or get data ("when I complete the todoitem") from the map. This is done using the putVar(…)

and getVar(…) methods.

 This corresponds broadly to the "World" object in Ruby-flavoured Cucumber.

The ScenarioExecution also provids access to the configured domain services (using the service(…)

method) and the DomainObjectContainer (through the container() method).


This could probably be refactored; Cucumber JVM provides automatic
dependency injection into setp definitions, but Apache Isis does not currently
leverage or exploit this capability.

Like the IsisSystemForTest class, the ScenarioExecution class binds an instance of itself onto a
ThreadLocal. It can then be accessed in BDD step definitions using ScenarioExecution.current() static
method.

5.2.3. WrapperFactory

As with integration tests, the UI can be simulated by "wrapping" each domain object in a proxy
using the WrapperFactory.

5.2.4. CukeGlueAbstract

The CukeGlueAbstract acts as a convenience superclass for writing BDD step definitions (analogous
to the IntegrationTestAbstract for integation tests). Underneath the covers it delegates to an
underlying ScenarioExecution.

5.3. Writing a BDD spec
BDD specifications contain:

• a XxxSpec.feature file, describing the feature and the scenarios (given/when/then)s that
constitute its acceptance criteria

• a RunSpecs.java class file to run the specification (all boilerplate). This will run all .feature files
in the same package or subpackages.

• one or several XxxGlue constituting the step definitions to be matched against.

The "glue" (step definitions) are intended to be reused across features. We therefore recommend
that they reside in a separate package, and are organized by the entity type upon which they

29

act.

For example, given a feature that involves Customer and Order, have the step definitions
pertaining to Customer reside in CustomerGlue, and the step definitions pertaining to Order reside
in OrderGlue.

The glue attribute of the Cucumber-JVM JUnit runner eallows you to indicate which package(s)
should be recursively searched to find any glue.

• a system initializer class. You can reuse the system initializer from any integration tests (as
described in Integration Test Support, bootstrapping section).

Here’s an example of a feature from the SimpleApp archetype:

@SimpleObjectsFixture
Feature: List and Create New Simple Objects

 @integration
 Scenario: Existing simple objects can be listed and new ones created
 Given there are initially 3 simple objects
 When I create a new simple object
 Then there are 4 simple objects

The @SimpleObjectsFixture is a custom tag we’ve specified to indicate the prerequisite fixtures to be
loaded; more on this in a moment. The @integration tag, meanwhile, says that this feature should be
run with integration-level scope.



Although BDD specs are most commonly used for end-to-end tests (ie at the same
scope as an integration test), the two concerns (expressability of a test to a
business person vs granularity of the test) should not be conflated. There are a
couple of good blog posts discussing this. The basic idea is to avoid the overhead
of a heavy-duty integration test if possible.

Apache Isis does also support running BDD specs in unit test mode; by annotating
the scenario with the @unit (rather than @integration tag). When running under
unit-level scope, the Apache Isis system is not instantiated. Instead, the
ScenarioExecution class returns JMock mocks (except for the WrapperFactory, if
configured).

To support unit testing scope Apache Isis provides the InMemoryDB class; a glorified
hashmap of "persisted" objects. Use of this utility class is optional.

Writing a BDD spec that supports both modes of operation therefore takes more
effort and we expect most users interested in BDD will use integration-testing
scope; for these reasons we have chosen not to include unit-testing support in the
SimpleApp archetype. For those who do require faster-executing test suite, it’s
worthwhile knowing that Apache Isis can support this.

The RunSpecs class to run this feature (and any other features in this package or subpackages) is just

30

ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
http://silkandspinach.net/2013/01/18/a-testing-strategy/
http://claysnow.co.uk/the-testing-iceberg/
http://claysnow.co.uk/living-documentation-can-be-readable-and-fast/
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

boilerplate

@RunWith(Cucumber.class)
@CucumberOptions(
 format = {
 "html:target/cucumber-html-report"
 ,"json:target/cucumber.json"
 },
 glue={"classpath:domainapp.integtests.specglue"},
 strict = true,
 tags = { "~@backlog", "~@ignore" })
public class RunSpecs {
 // intentionally empty
}

The JSON formatter allows integration with enhanced reports, for example as provided by
Masterthought.net (screenshots at end of page). (Commented out) configuration for this is provided
in the SimpleApp archetype.

The bootstrapping of Apache Isis can be moved into a BootstrappingGlue step definition:

public class BootstrappingGlue extends CukeGlueAbstract {
 @Before(value={"@integration"}, order=100)
 public void beforeScenarioIntegrationScope() {
 org.apache.log4j.PropertyConfigurator.configure("logging.properties");
 SimpleAppSystemInitializer.initIsft();

 before(ScenarioExecutionScope.INTEGRATION);
 }
 @After
 public void afterScenario(cucumber.api.Scenario sc) {
 assertMocksSatisfied();
 after(sc);
 }
}

The fixture to run also lives in its own step definition, CatalogOfFixturesGlue:

public class CatalogOfFixturesGlue extends CukeGlueAbstract {
 @Before(value={"@integration", "@SimpleObjectsFixture"}, order=20000)
 public void integrationFixtures() throws Throwable {
 scenarioExecution().install(new RecreateSimpleObjects());
 }
}

Note that this is annotated with a tag (@SimpleObjectsFixture) so that the correct fixture runs. (We
might have a whole variety of these).

31

http://www.masterthought.net/section/cucumber-reporting
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
https://github.com/apache/isis/blob/07fe61ef3fb029ae36427f60da2afeeb931e4f88/example/application/simpleapp/integtests/src/test/java/domainapp/integtests/specglue/CatalogOfFixturesGlue.java#L24

The step definitions pertaining to SimpleObject domain entity then reside in the SimpleObjectGlue
class. This is where the heavy lifting gets done:

public class SimpleObjectGlue extends CukeGlueAbstract {
 @Given("^there are.* (\\d+) simple objects$")
 public void there_are_N_simple_objects(int n) throws Throwable {
 try {
 final List<SimpleObject> findAll = service(SimpleObjects.class).listAll();
 assertThat(findAll.size(), is(n));
 putVar("list", "all", findAll);

 } finally {
 assertMocksSatisfied();
 }
 }
 @When("^I create a new simple object$")
 public void I_create_a_new_simple_object() throws Throwable {
 service(SimpleObjects.class).create(UUID.randomUUID().toString());
 }
}


If using Java 8, note that Cucumber JVM supports a simplified syntax using
lambdas.

5.4. BDD Tooling
To help write feature files and generate step definitions, we recommend Roberto Lo Giacco’s
Eclipse plugin. For more information, see Dan’s short blog post. It works very well. Of interest: this
is implemented using XText.

5.5. Maven Configuration
Apache Isis' BDD spec support is automatically configured if you use the SimpleApp archetype. To
set it up manually, update the pom.xml of your domain object model module:

<dependency>
 <groupId>org.apache.isis.core</groupId>
 <artifactId>isis-core-specsupport</artifactId>
 <scope>test</scope> ①
</dependency>

① Normally test; usual Maven scoping rules apply.

We also recommend that you configure the maven-surefire-plugin to pick up the following class
patterns:

32

https://github.com/apache/isis/blob/07fe61ef3fb029ae36427f60da2afeeb931e4f88/example/application/simpleapp/integtests/src/test/java/domainapp/integtests/specglue/modules/simple/SimpleObjectGlue.java#L31
https://cucumber.io/docs/reference/jvm#java-8-lambdas
https://cucumber.io/docs/reference/jvm#java-8-lambdas
https://github.com/rlogiacco/Natural
https://github.com/rlogiacco/Natural
http://danhaywood.com/2013/07/05/cucumber-editors-in-eclipse/
http://www.eclipse.org/Xtext/
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.10</version>
 <configuration>
 <includes>
 <include>**/*Test.java</include>
 <include>**/*Test_*.java</include>
 <include>**/*Spec*.java</include>
 </includes>
 <excludes>
 <exclude>**/Test*.java</exclude>
 <exclude>**/*ForTesting.java</exclude>
 <exclude>**/*Abstract*.java</exclude>
 </excludes>
 <useFile>true</useFile>
 <printSummary>true</printSummary>
 <outputDirectory>${project.build.directory}/surefire-reports</outputDirectory>
 </configuration>
</plugin>

You may also find it more convenient to place the .feature files in src/test/java, rather than
src/test/resources. If you wish to do this, then your integtest module’s pom.xml must contain:

<build>
 <testResources>
 <testResource>
 <filtering>false</filtering>
 <directory>src/test/resources</directory>
 </testResource>
 <testResource>
 <filtering>false</filtering>
 <directory>src/test/java</directory>
 <includes>
 <include>**</include>
 </includes>
 <excludes>
 <exclude>**/*.java</exclude>
 </excludes>
 </testResource>
 </testResources>
</build>

33

Chapter 6. Fixture Scripts
When writing integration tests (and implementing the glue for BDD specs) it can be difficult to keep
the "given" short; there could be a lot of prerequisite data that needs to exist before you can actually
exercise your system. Moreover, however we do set up that data, but we also want to do so in a
way that is resilient to the system changing over time.

On a very simple system you could probably get away with using SQL to insert directly into the
database, or you could use a toolkit such as dbunit to upload data from flat files. Such approaches
aren’t particularly maintainable though. If in the future the domain entities (and therefore
corresponding database tables) change their structure, then all of those data sets will need
updating.

Even more significantly, there’s no way to guarantee that the data that’s being loaded is logically
consistent with the business behaviour of the domain objects themselves. That is, there’s nothing to
stop your test from putting data into the database that would be invalid if one attempted to add it
through the app.

The solution that Apache Isis provides is a small library called fixture scripts. A fixture script is
basically a wrapper for executing arbitrary work, but that work almost always invoking a business
action.


If you want to learn more on this topic (with live coding!), check out this
presentation given at BDD Exchange 2014.

There is another benefit to Apache Isis' fixture script approach; the fixtures can be (in prototyping
mode) run from your application. This means that fixture scripts can actually help all the way
through the development lifecycle:

• when specifying a new feature, you can write a fixture script to get the system into the "given"
state, and then start exploring the required functionality with the domain expert actually within
the application

And if you can’t write a fixture script for the story, it probably means that there’s some
prerequisite feature that needs implementing that you hadn’t previously recognized

• when the developer implements the story, s/he has a precanned script to run when they
manually verify the functionality works

• when the developer automates the story’s acceptance test as an integration test, they already
have the "given" part of the test implemented

• when you want to pass the feature over to the QA/tester for additional manual exploratory
testing, they have a fixture script to get them to a jumping off point for their explorations

• when you want to demonstrate the implemented feature to your domain expert, your demo can
use the fixture script so you don’t bore your audience in performing lots of boring setup before
getting to the actual feature

• when you want to roll out training to your users, you can write fixture scripts as part of their
training exercises

34

http://dbunit.sourceforge.net/howto.html
https://skillsmatter.com/skillscasts/5638-to-those-whom-much-is-given-much-is-expected

The following sections explain the API and how to go about using the API.

6.1. API and Usage
There are two parts to using fixture scripts: the FixtureScripts domain service class, and the
FixtureScript view model class:

• The role of the FixtureScripts domain service is to locate all fixture scripts from the classpath
and to let them be invoked, either from an integration test/BDD spec or from the UI of your Isis
app.

• The role of FixtureScript meanwhile is to subclass for each of the scenarios that you want to
define. You can also subclass from FixtureScript to create helpers; more on this below.

Let’s look at FixtureScripts domain service in more detail first.

6.1.1. FixtureScripts

There are two ways in which you can provide a FixtureScripts service.

The original (pre-1.9.0) approach is to subclass subclass FixtureScripts domain service, with your
subclass specifying which package to search for. Various other settings can also be provided, and -
being a custom class - you can also add in additional actions. A common example is to provide a
"one-shot" action to recreate a standard demo set of objects.

As of 1.9.0 there is an alternative design. Instead of subclassing FixtureScripts you instead
implement the FixtureScriptsSpecificationProvider SPI. (As its name suggests), this provides a
FixtureScriptsSpecification object that contains the same information as would otherwise have
been in the FixtureScripts subclass.

The actual implementation of the FixtureScripts service is then provided by the framework itself,
namely the FixtureScriptsDefault domain service, annotated to be rendered on the secondary
"Prototyping" menu. This uses the FixtureScriptsSpecificationProvider to adjust itself accordinly.

For example, here’s the FixtureScriptsSpecificationProvider service that’s generated by the
SimpleApp archetype:

35

rgsvc.pdf#_rgsvc_spi_FixtureScriptsSpecificationProvider
rgsvc.pdf#_rgsvc_api_FixtureScriptsDefault
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

@DomainService(nature = NatureOfService.DOMAIN)
public class DomainAppFixturesProvider implements FixtureScriptsSpecificationProvider
{
 @Override
 public FixtureScriptsSpecification getSpecification() {
 return FixtureScriptsSpecification
 .builder(DomainAppFixturesProvider.class)
①
 .with(FixtureScripts.MultipleExecutionStrategy.EXECUTE)
②
 .withRunScriptDefault(RecreateSimpleObjects.class)
③
 .withRunScriptDropDown(FixtureScriptsSpecification.DropDownPolicy
.CHOICES) ④
 .withRecreate(RecreateSimpleObjects.class)
⑤
 .build();
 }
}

① search for all fixture scripts under the package containing this class

② if the same fixture script (class) is encountered more than once, then run anyway; more on this
in Organizing Fixture scripts], below.

③ specify the fixture script class to provide as the default for the service’s "run fixture script"
action

④ whether the service’s "run fixture script" action should display other fixture scripts using a
choices drop down or (if there are very many of them) using an auto-complete

⑤ if present, enables a "recreate objects and return first" action to be displayed in the UI

The benefit of this design - decoupling the responsibilities of the superclass and the subclass - is that
it ensures that there is always an instance of FixtureScripts available, even if the application itself
doesn’t provide one. Some of the (non-ASF) Isis Addons modules (eg Isis addons' security module)
expect there to be a FixtureScripts service for seeding data, which has caused some confusion.

By way of comparison, if using the older pre-1.9.0 approach then you would create a subclass:

36

http://isisaddons.org
http://github.com/isisaddons/isis-module-security

@DomainService
@DomainServiceLayout(
 menuBar = DomainServiceLayout.MenuBar.SECONDARY, ①
 named="Prototyping", ②
 menuOrder = "500"
)
public class DomainAppFixturesService extends FixtureScripts { ③
 public DomainAppFixturesService() {
 super(
 "domainapp", ④
 MultipleExecutionStrategy.EXECUTE); ⑤
 }
 @Override
 public FixtureScript default0RunFixtureScript() {
 return findFixtureScriptFor(RecreateSimpleObjects.class); ⑥
 }
 @Override
 public List<FixtureScript> choices0RunFixtureScript() { ⑦
 return super.choices0RunFixtureScript();
 }
}

① in the UI, render the on the right hand side (secondary) menu bar…

② … under the "Prototyping" menu

③ inherit from org.apache.isis.applib.fixturescripts.FixtureScripts

④ search for all fixture scripts under the "domainapp" package; in your code this would probably
be "com.mycompany.myapp" or similar

⑤ if the same fixture script (class) is encountered more than once, then run anyway; more on this
in Organizing Fixture scripts], below.

⑥ (optional) specify a default fixture script to run, in this case RecreateSimpleObjects fixture script
(see below)

⑦ make all fixture scripts found available as a drop-down (by increasing the visibility of this
method to public)

This isn’t quite equivalent; you would need to write additional code to support the "recreate objects
and return first" action, for example.

Either way, here’s how the domain service looks like in the UI:

37

and here’s what the runFixtureScript action prompt looks like:

when this is executed, the resultant objects (actually, instances of FixtureResult`) are shown in the

38

images/testing/fixture-scripts/prototyping-menu.png
images/testing/fixture-scripts/prompt.png

UI:

If you had defined many fixture scripts then a drop-down might become unwieldy, in which case
your code would probably override the autoComplete…()) instead:

 @Override
 public List<FixtureScript> autoComplete0RunFixtureScript(final @MinLength(1)
String searchArg) {
 return super.autoComplete0RunFixtureScript(searchArg);
 }

You are free, of course, to add additional "convenience" actions into it if you wish for the most
commonly used/demo’d setups ; you’ll find that the SimpleApp archetype adds this additional
action:

39

images/testing/fixture-scripts/result-list.png
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

 @Action(
 restrictTo = RestrictTo.PROTOTYPING
)
 @ActionLayout(
 cssClassFa="fa fa-refresh"
)
 @MemberOrder(sequence="20")
 public Object recreateObjectsAndReturnFirst() {
 final List<FixtureResult> run = findFixtureScriptFor(RecreateSimpleObjects
.class).run(null);
 return run.get(0).getObject();
 }

Let’s now look at the FixtureScript class, where there’s a bit more going on.

6.1.2. FixtureScript

A fixture script is ultimately just a block of code that can be executed, so it’s up to you how you
implement it to set up the system. However, we strongly recommend that you use it to invoke
actions on business objects, in essence to replay what a real-life user would have done. That way,
the fixture script will remain valid even if the underlying implementation of the system changes in
the future.

Here’s the RecreateSimpleObjects fixture script from the SimpleApp archetype:

40

ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

public class RecreateSimpleObjects extends FixtureScript { ①

 public final List<String> NAMES = Collections.unmodifiableList(Arrays.asList(
 "Foo", "Bar", "Baz", "Frodo", "Froyo",
 "Fizz", "Bip", "Bop", "Bang", "Boo")); ②
 public RecreateSimpleObjects() {
 withDiscoverability(Discoverability.DISCOVERABLE); ③
 }
 private Integer number; ④
 public Integer getNumber() { return number; }
 public RecreateSimpleObjects setNumber(final Integer number) {
 this.number = number;
 return this;
 }
 private final List<SimpleObject> simpleObjects = Lists.newArrayList(); ⑤
 public List<SimpleObject> getSimpleObjects() {
 return simpleObjects;
 }
 @Override
 protected void execute(final ExecutionContext ec) { ⑥
 // defaults
 final int number = defaultParam("number", ec, 3); ⑦
 // validate
 if(number < 0 || number > NAMES.size()) {
 throw new IllegalArgumentException(
 String.format("number must be in range [0,%d)", NAMES.size()));
 }
 // execute
 ec.executeChild(this, new SimpleObjectsTearDown()); ⑧
 for (int i = 0; i < number; i++) {
 final SimpleObjectCreate fs =
 new SimpleObjectCreate().setName(NAMES.get(i));
 ec.executeChild(this, fs.getName(), fs); ⑨
 simpleObjects.add(fs.getSimpleObject()); ⑩
 }
 }
}

① inherit from org.apache.isis.applib.fixturescripts.FixtureScript

② a hard-coded list of values for the names. Note that the Isis addons' fakedata module (non-ASF)
could also have been used

③ whether the script is "discoverable"; in other words whether it should be rendered in the drop-
down by the FixtureScripts service

④ input property: the number of objects to create, up to 10; for the calling test to specify, but note
this is optional and has a default (see below). It’s important that a wrapper class is used (ie
java.lang.Integer, not int)

⑤ output property: the generated list of objects, for the calling test to grab

41

http://github.com/isisaddons/isis-module-fakedata

⑥ the mandatory execute(…) API

⑦ the defaultParam(…) (inherited from FixtureScript) will default the number property (using
Java’s Reflection API) if none was specified

⑧ call another fixture script (SimpleObjectsTearDown) using the provided ExecutionContext. Note
that although the fixture script is a view model, it’s fine to simply instantiate it (rather than
using DomainObjectContainer#newTransientInstance(…)).

⑨ calling another fixture script (SimpleObjectCreate) using the provided ExecutionContext

⑩ adding the created object to the list, for the calling object to use.

Because this script has exposed a "number" property, it’s possible to set this from within the UI. For
example:

When this is executed, the framework will parse the text and attempt to reflectively set the
corresponding properties on the fixture result. So, in this case, when the fixture script is executed
we actually get 6 objects created:

42

It’s commonplace for one fixture script to call another. In the above example this script called
SimpleObjectsTearDown and SimpleObjectCreate. Let’s take a quick look at SimpleObjectCreate:

public class SimpleObjectCreate extends FixtureScript { ①

 private String name; ②
 public String getName() { return name; }
 public SimpleObjectCreate setName(final String name) {
 this.name = name;
 return this;
 }
 private SimpleObject simpleObject; ③
 public SimpleObject getSimpleObject() {
 return simpleObject;
 }
 @Override
 protected void execute(final ExecutionContext ec) { ④
 String name = checkParam("name", ec, String.class); ⑤
 this.simpleObject = wrap(simpleObjects) ⑥
 .create(name); ⑦
 ec.addResult(this, simpleObject); ⑧
 }
 @javax.inject.Inject
 private SimpleObjects simpleObjects; ⑨
}

43

① inherit from org.apache.isis.applib.fixturescripts.FixtureScript, as above

② input property: name of the object; this time it is required

③ output property: the created simple object

④ the mandatory execute(…) API

⑤ the checkParam(…) (inherited from FixtureScript) will check that the "name" property has been
populated (using Java’s Reflection API) and throw an exception if not

⑥ wrap the injected SimpleObjects domain service (using the WrapperFactory) to simulate
interaction through the UI…

⑦ .. and actually create the object using the "create" business action of that service

⑧ add the resulting object to the execution context; this makes the object available to access if run
from the UI

⑨ inject the domain service into the fixture script

6.1.3. Using within Tests

Fixture scripts can be called from integration tests just the same way that fixture scripts can call
one another.

For example, here’s an integration test from the SimpleApp archetype:

44

rgsvc.pdf#_rgsvc_api_WrapperFactory
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

public class SimpleObjectIntegTest extends SimpleAppIntegTest {
 @Inject
 FixtureScripts fixtureScripts; ①
 SimpleObject simpleObjectWrapped;
 @Before
 public void setUp() throws Exception {
 // given
 RecreateSimpleObjects fs =
 new RecreateSimpleObjects().setNumber(1); ②
 fixtureScripts.runFixtureScript(fs, null); ③

 SimpleObject simpleObjectPojo =
 fs.getSimpleObjects().get(0); ④
 assertThat(simpleObjectPojo).isNotNull();

 simpleObjectWrapped = wrap(simpleObjectPojo); ⑤
 }
 @Test
 public void accessible() throws Exception {
 // when
 final String name = simpleObjectWrapped.getName();
 // then
 assertThat(name).isEqualTo(fs.NAMES.get(0));
 }
 ...
}

① inject the FixtureScripts domain service (just like any other domain service)

② instantiate the fixture script for this test, and configure

③ execute the fixture script

④ obtain the object under test from the fixture

⑤ wrap the object (to simulate being interacted with through the UI)

6.1.4. Organizing Fixture scripts

There are lots of ways to organize fixture scripts, but we’ve used them as either:

• a fairly flat style, eg as in the SimpleApp archetype, also as in the Isis addons' todoapp;

• in a "composite pattern" style, eg as in the Estatio open source app.

These two styles are probably best illustrated with, well, some illustrations. Here’s a fixture script
in the "flat" style for setting up a customer with some orders, a number of which has been placed:

45

ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
http://github.com/isisaddons/isis-app-todoapp
https://github.com/estatio/estatio/blob/ea20a6ce257acede50de6ce4fd2ff29713fcd689/estatioapp/fixture/src/main/java/org/estatio/fixture/invoice/InvoiceForLeaseItemTypeOfDiscountOneQuarterForOxfMiracle005.java#L66)

Notice how we have a single script that’s in control of the overall process, and takes responsibility
for passing data from one fixture script to the next.

Here’s a similar, simpler script, from the same fictional app, to set up two customers:

We can reuse the same fixture "customer" script, either calling it twice or (perhaps better) passing it
an array of customer details to set up.

With the composite style, we rely on each fixture script to set up its own prerequisites. Thus:

46

images/testing/fixture-scripts/flat-1.png
images/testing/fixture-scripts/flat-2.png

Back in the earlier section we noted the MultipleExecutionStrategy setting. We can now explain the
meaning of this: the enum value of EXECUTE is designed for the flat style (where every fixture script
will be called), whereas the enum value of IGNORE is designed for the composite style, and ensures
that any fixture scripts visited more than once (eg TearDown) are only every executed the first
time.

As already noted , the app generated by the SimpleApp archetype uses the flat structure, and we
feel that it’s a better at separating out the "how" (how we set up some graph of domain objects into
a known state, eg a customer with shipped placed orders and a newly placed order) from the
"what" (what data should we actually use for the customer’s name, say).

The composite style tends to combine these, which one could argue does not separate
responsibilities well enough. On the other hand, one could also make an argument that the
composite style is a good way to implement precanned personas, eg "Joe", the customer who has a
newly placed order, from "Mary" customer who has none.

Further approaches

As of there are two other approaches.

The first is to take advantage of a new MultipleExecutionStrategy, namely EXECUTE_ONCE_BY_VALUE.

47

images/testing/fixture-scripts/composite.png
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

Under this strategy the determination as to whether to run a given fixture script is by comparing
the fixture script against all others that have run. If all fixture scripts implement value semantics,
then they can effectively determine whether they need to run or not.

This strategy was introduced in order to better support the ExcelFixture fixture script (provided by
the (non-ASF) Isis addons' excel module. The ExcelFixture takes an Excel spreadsheet and loads up
each row. For those cases where we wish to ensure that the same spreadsheet is not loaded more
than once, the IGNORE strategy would have required that a trivial subclass of ExcelFixture is created
for each and every spreadsheet. The EXECUTE_ONCE_BY_VALUE on the other hand delegates the
determination to the value semantics of the ExcelFixture, which is based on the contents of the
spreadsheet.

 Note that as of 1.10.0 the IGNORE enum has been deprecated, replaced by
EXECUTE_ONCE_BY_CLASS

The second approach is in recognition that there is, in fact, something of a design flaw with the
concept of MultipleExecutionStrategy: it requires that all fixture scripts being run follow the same
conventions. There’s a good argument that this shouldn’t be a global "setting": the responsibility for
determining whether a given fixture script should be executed should reside not in the
FixtureScripts service but in the FixtureScript itself.

Thus, the FixtureScripts.ExecutionContext exposes the getPreviouslyExecuted() method that allows
the fixture script to check for itself which fixture scripts have already been run, and act
accordingly. For this approach, the MultipleExecutionStrategy should be left as simply EXECUTE.

6.2. SudoService
Sometimes in our fixture scripts we want to perform a business action running as a particular user.
This might be for the usual reason - so that our fixtures accurately reflect the reality of the system
with all business constraints enforced using the WrapperFactory - or more straightforwardly it might
be simply that the action depends on the identity of the user invoking the action.

An example of the latter case is in the (non-ASF) Isis addons' todoapp's ToDoItem class:

48

http://github.com/isisaddons/isis-module-excel
http://github.com/isisaddons/isis-app-todoapp

Production code that depends on current user

public ToDoItem newToDo(
 @Parameter(regexPattern = "\\w[@&:\\-\\,\\.\\+ \\w]*") @ParameterLayout(named
="Description")
 final String description,
 @ParameterLayout(named="Category")
 final Category category,
 @Parameter(optionality = Optionality.OPTIONAL) @ParameterLayout(named
="Subcategory")
 final Subcategory subcategory,
 @Parameter(optionality = Optionality.OPTIONAL) @ParameterLayout(named="Due
by")
 final LocalDate dueBy,
 @Parameter(optionality = Optionality.OPTIONAL) @ParameterLayout(named="Cost")
 final BigDecimal cost) {
 return newToDo(description, category, subcategory, currentUserName(), dueBy,
cost);
}
private String currentUserName() {
 return container.getUser().getName(); ①
}

① is the current user.

The fixture for this can use the SudoService to run a block of code as a specified user:

Fixture Script

final String description = ...
final Category category = ...
final Subcategory subcategory = ...
final LocalDate dueBy = ...
final BigDecimal cost = ...
final Location location = ...

toDoItem = sudoService.sudo(username,
 new Callable<ToDoItem>() {
 @Override
 public ToDoItem call() {
 final ToDoItem toDoItem = wrap(toDoItems).newToDo(
 description, category, subcategory, dueBy, cost);
 wrap(toDoItem).setLocation(location);
 return toDoItem;
 }
 });

Behind the scenes the SudoService simply talks to the DomainObjectContainer to override the user
returned by the getUser() API. It is possible to override both users and roles.

49

	Testing
	Table of Contents
	Chapter 1. Testing
	1.1. Other Guides

	Chapter 2. Overview
	2.1. Unit tests vs Integ tests
	2.2. Integ tests vs BDD Specs
	2.3. Simulated UI (WrapperFactory)
	2.4. Dependency Injection
	2.5. Given/When/Then
	2.6. Fixture Management
	2.7. Fake data
	2.8. Feature Toggles

	Chapter 3. Unit Test Support
	3.1. Contract Tests
	3.2. JMock Extensions
	3.3. SOAP Fake Endpoints
	3.4. Maven Configuration

	Chapter 4. Integration Test Support
	4.1. Typical Usage
	4.2. Bootstrapping
	4.3. Wrapper Factory
	4.4. Maven Configuration

	Chapter 5. BDD Spec Support
	5.1. How it works
	5.2. Key classes
	5.3. Writing a BDD spec
	5.4. BDD Tooling
	5.5. Maven Configuration

	Chapter 6. Fixture Scripts
	6.1. API and Usage
	6.2. SudoService

