
Apache Isis Maven plugin

Table of Contents
1. Apache Isis Maven plugin . 1

1.1. Other Guides . 1

2. Introduction . 2

2.1. AppManifest . 2

3. validate goal . 4

3.1. dom submodule. 4

3.2. To run . 6

3.3. Example of failure . 6

3.4. Custom validation rules . 7

3.5. 1.9.0 version. 8

4. swagger goal . 10

4.1. integtest submodule. 10

4.2. To run . 12

5. xsd goal . 13

5.1. xsd submodule . 13

5.2. To run . 20

Chapter 1. Apache Isis Maven plugin
This reference guide describes the goals provided by Apache Isis' Maven plugin.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• DataNucleus object store

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin (this guide)

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)

1

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgsvc.pdf
rgcfg.pdf
rgcms.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

Chapter 2. Introduction
The Apache Isis Maven plugin defines three goals:

• validate

Use to verify at build time that the metamodel of an application is valid. This runs the
MetaModelValidator that is also run when the application is started up.

• swagger

Uses the SwaggerService to generate Swagger spec files that describe the public and/or private
RESTful APIs exposed by the RestfulObjects viewer.

• xsd

Uses the JaxbService to generate XSD schemas from any JAXB-annotated view models/DTOs.

This is instead of and preferable to using the JAXB schemagen tool, because it uses the
framework’s support (via @XmlJavaTypeAdapter) to translate any references to domain objects
into OidDtos (as defined by the Apache Isis common schema).

The validate goal is by default bound to the test phase, and the swagger goal is by default bound to
the package phase; both are typically of your application’s dom sub-module. The xsd goal meanwhile
defaults to the generate-resources phase, and this is generally used in a completely separate sub-
module. An example can be found in the (non-ASF) Isis addons' todoapp example app; the separate
submodule that uses the xsd goal is (also) called todoapp-xsd.

All of these goals require an AppManifest to point the plugin at, so that it knows how to bootstrap an
Isis runtime. This is discussed below, followed by sections on configuring the two goals.

2.1. AppManifest
As noted in the introduction, all the goals require an AppManifest to point the plugin at, so that it
knows how to bootstrap an Isis runtime.

This can be extremely minimal; it isn’t necessary to use the main AppManifest (in the app module)
used to bootstrap the application, you can instead use a cut-down one. This then allows the plugins
to be run during the build of the dom module, rather than having to run in the context of the
integtest module.

For example, the SimpleApp's manifest is:

2

rgsvc.pdf#_rgsvc_api_SwaggerService
http://swagger.io
ugvro.pdf
rgsvc.pdf#_rgsvc_api_JaxbService
https://jaxb.java.net/2.2.4/docs/schemagen.html
rgant.pdf#_rgant-XmlJavaTypeAdapter
rgcms.pdf#_rgcms_schema-common
http://github.com/isisaddons/isis-app-todoapp
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

package domainapp.dom;
...
public class DomainAppDomManifest implements AppManifest {
 @Override
 public List<Class<?>> getModules() {
 return Arrays.asList(
 DomainAppDomainModule.class // domain (entities and repositories)
);
 }
 @Override
 public List<Class<?>> getAdditionalServices() { return Collections.emptyList(); }
 @Override
 public String getAuthenticationMechanism() { return null; }
 @Override
 public String getAuthorizationMechanism() { return null; }
 @Override
 public List<Class<? extends FixtureScript>> getFixtures() { return null; }
 @Override
 public Map<String, String> getConfigurationProperties() { return null; }
}

where DomainAppDomainModule simply identifies the package for the manifest to search under:

package domainapp.dom;
public final class DomainAppDomainModule { }

The downside of using a minimal AppManifest in the dom module is that any contributed
actions/associations will be ignored.

We recommend the following:

• run the validate goal in the dom submodule; this will give early warning if there are any
syntactic errors in the model, eg orphaned supporting methods

• run the swagger goal in the integtest submodule; this ensures that the generated Swagger spec
files correctly include any contributed actions/associations.

• run the xsd plugin in a new xsd submodule; contributed actions are irrelevant for this particular
goal; having a separate submodule allows the configuration of both the xsd goal (to generate the
XSD schemas) and any other XSD-related configuration to be kept in a single place.

The SimpleApp archetype reflects these recommendations for the validate and swagger goals. You
can find an example of the xsd plugin in the (non-ASF) Isis addons' todoapp application.

3

ug.pdf#_ug_getting-started_simpleapp-archetype
http://github.com/isisaddons/isis-app-todoapp

Chapter 3. validate goal
The Apache Isis programming model requires that a number of naming conventions are followed.

For example, the validator will detect any orphaned supporting methods (eg hideXxx()) if the
corresponding property or action has been renamed or deleted but the supporting method was not
also updated. Another example is that a class cannot have a title specified both using title()
method and also using @Title annotation.

When running the application these are enforced by the MetaModelValidator component that detects
these errors, failing fast.

The purpose of the validate goal of the isis-maven-plugin is to enforce these naming conventions at
build time, typically enforced by way of a continuous integration server.

The validate goal defines a single property:

• appManifest - fully qualified class name for the app manifest used to bootstrap the application
(see discussion above)

The sections below explain how to configure the plugin within an app.


The instructions given here relate to 1.10.0. This goal was also released for
1.9.0, but with a slightly different configuration; see the final section for
differences.

3.1. dom submodule
Update the pom.xml (we recommend in your project’s dom module, and with a minimal AppManifest):

4

<profile>
 <id>isis-validate</id>
 <activation>
 <property>
 <name>!skip.isis-validate</name>
①
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.isis.tool</groupId>
 <artifactId>isis-maven-plugin</artifactId>
 <version>${isis.version}</version>
②
 <configuration>
 <appManifest>domainapp.dom.DomainAppDomManifest</appManifest>
③
 </configuration>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simpleapp-dom</artifactId>
④
 <version>${project.version}</version>
 </dependency>
 <!-- workaround to avoid conflict with plexus-default -->
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>16.0.1</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>test</phase>
 <goals>
 <goal>validate</goal>
⑤
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

① the profile is active by default, though can be disabled using -Dskip.isis-validate

② set to 1.10.0 (or any later version)

5

③ the manifest discussed previously; adjust as required

④ the dom module for the project; adjust as required

⑤ binds the plugin’s validate goal to the Maven test lifecycle phase (ie the goal will be called when
mvn test is run).

3.2. To run
The plugin is activated by default, so is run simply using:

mvn test

This will run any tests, and then also - because the plugin is activated by the isis-validate property
and bound to the test phase, will run the plugin’s validate goal.

If for any reason you want to disable the validation, use:

mvn test -Dskip.isis-validate

3.3. Example of failure
In the SimpleApp application the SimpleObject defines an updateName action. This has a supporting
method:

public SimpleObject updateName(...) { ... }
public String default0UpdateName() { ... }

We can introduce an error by misspelling the supporting method, for example:

public String default0XUpdateName() { ... }

Running mvn test then generates this output:

6

ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

[error]
[error]
[error]
[error] domainapp.dom.simple.SimpleObject#default0XUpdateName: has prefix default, is
probably a supporting method for a property, collection or action. If the method is
intended to be an action, then rename and use @ActionLayout(named="...") or ignore
completely using @Programmatic
[error]
[error]
[error]
[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] Simple App ... SUCCESS [0.087 s]
[INFO] Simple App DOM FAILURE [4.182 s]
[INFO] Simple App Fixtures SKIPPED
[INFO] Simple App Application SKIPPED
[INFO] Simple App Integration Tests SKIPPED
[INFO] Simple App Webapp SKIPPED
[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] ...
[ERROR] Failed to execute goal org.apache.isis.tool:isis-maven-plugin:1.13.0:validate
(default) on project simpleapp-dom: 1 problems found. -> [Help 1]

If one were to attempt to run the application, the same error would appear in the log files on
startup (and the application would not boot).

3.4. Custom validation rules
It is also possible to customize the validation, explained here. For example, you could enforce
project-specific conventions by implementing a custom MetaModelValidator, and registering using a
configuration property.

To support this using AppManifest`s, override its `getConfigurationProperties() method:

public class DomainAppDomManifest implements AppManifest {
 ...
 public Map<String, String> getConfigurationProperties() {
 final Map<String, String> map = Maps.newTreeMap();

map.put("isis.reflector.validator","com.mycompany.myapp.MyMetaModelValidator");
 return map;
 }
}

7

ugbtb.pdf#_ugbtb_programming-model_custom-validator

3.5. 1.9.0 version
The 1.9.0 version of the plugin requires slightly different configuration. Rather than using an
AppManifest, instead the configuration directory containing isis.properties is specified:

<profile>
 <id>isis-validate</id>
 <activation>
 <activeByDefault>false</activeByDefault>
①
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.isis.tool</groupId>
 <artifactId>isis-maven-plugin</artifactId>
 <version>1.9.0</version>
 <configuration>
 <isisConfigDir>../webapp/src/main/webapp/WEB-INF</isisConfigDir>
②
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.apache.isis.example.application</groupId>
 <artifactId>simpleapp-dom</artifactId>
 <version>1.9.0</version>
 </dependency>
 <!-- workaround to avoid conflict with plexus-default -->
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>16.0.1</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>test</phase>
 <goals>
 <goal>validate</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

① activated using the -P profile flag rather than a -D system property

② specify the isisConfigDir directory (containing the isis.properties file).

8

To use the 1.9.0 version, use:

mvn -P isis-validate test


Note that the isisConfigDir property was removed in 1.10.0; only the AppManifest
approach is supported.

9

Chapter 4. swagger goal
The swagger goal of the isis-maven-plugin uses the SwaggerService to generate Swagger spec files to
describe the public and/or private RESTful APIs exposed by the RestfulObjects viewer.

These spec files, once generated, can then be used in the build pipeline to generate client-side stubs,
typically using Swagger’s own swagger-codegen-maven plugin.

The swagger goal defines the following properties:

• appManifest - fully qualified class name for the app manifest used to bootstrap the application
(see discussion above)

• fileNamePrefix - (optional) a prefix to the generated file names (is suffixed by the requested
visibilities, see below).

Defaults to swagger.

• visibilities - (optional) list of required visibilities.

Defaults to [PUBLIC, PRIVATE] (meaning that two spec files will be created).

• format - (optional) which format to generate, either JSON or YAML.

Defaults to JSON.

• output - (optional) subdirectory under the target directory to generate the swagger spec files

Defaults to generated-resources/isis-swagger

4.1. integtest submodule
Update the pom.xml (in your project’s integtest module):

10

rgsvc.pdf#_rgsvc_api_SwaggerService
http://swagger.io
ugvro.pdf
https://github.com/swagger-api/swagger-codegen/tree/master/modules/swagger-codegen-maven-plugin

<profile>
 <id>isis-swagger</id>
 <activation>
 <property>
 <name>!skip.isis-swagger</name> ①
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.isis.tool</groupId>
 <artifactId>isis-maven-plugin</artifactId>
 <version>${isis.version}</version> ②
 <configuration>
 <appManifest>domainapp.app.DomainAppAppManifest</appManifest> ③
 <visibilities> ④
 <visibility>PUBLIC</visibility>
 <visibility>PRIVATE</visibility>
 </visibilities>
 <format>JSON</format> ⑤
 <fileNamePrefix>swagger</fileNamePrefix> ⑤
 </configuration>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simpleapp-dom</artifactId> ⑥
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>16.0.1</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>swagger</goal> ⑦
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

① the profile is active by default, though can be disabled using -Dskip.isis-swagger

② set to 1.11.0 (or any later version)

11

③ the manifest discussed previously; adjust as required

④ the visibilities to create (one swagger spec file per visibility listed)

⑤ which file format to generate the spec files as.

⑥ the dom module for the project; adjust as required

⑦ binds the plugin’s swagger goal to the Maven package lifecycle phase (ie the goal will be called
when mvn package is run).

4.2. To run
The plugin is activated by default, so is run simply using:

mvn package

12

Chapter 5. xsd goal
The xsd goal of the isis-maven-plugin uses the JaxbService to generate XSD schemas from any JAXB-
annotated view model/DTOs.

This is instead of and preferable to using the JAXB schemagen tool, because it uses the framework’s
support (via @XmlJavaTypeAdapter) to translate any references to domain objects into OidDtos (as
defined by the Apache Isis common schema).

The xsd goal defines the following properties:

• appManifest - fully qualified class name for the app manifest used to bootstrap the application
(see discussion above)

• jaxbClasses - a list of JAXB-annotated view model classes;

• output - (optional) subdirectory under the target directory to generate the XSDs

Defaults to generated-resources/isis-xsd

• separate - (optional) whether to create separate directories for each JAXB-class.

Defaults to false. Most DTO classes will reference one another or the common schema.
Normally it’s fine to merge all these XSDs together. This property, if set, results in each a
separate directory for each generation of its XSD or XSDs.

• commonSchemas - (optional) whether to also generate the isis common schema(s).

Defaults to false; if set then the call to JaxbService will set IsisSchemas.INCLUDE flag.

As a convenience to any (Java) consumers, the XSDs generated from the view models can then in
turn be generated into DTOs. The original view models and these DTOs are similar but not
identical: while the view models can only be used within the Isis application (they may reference
underlying domain entities) whereas the DTO classes generated from the XSDs can be used
standalone, eg by a Java subscriber running on an ESB such as Apache Camel.

The rest of this section explains how to configure a new xsd submodule that uses the isis-maven-
plugin along with other standard plugins in order to generate both XSDs and DTOs. The pom.xml
described below uses Maven profiles to separate out these two responsibilities.

5.1. xsd submodule
We recommend creating a new submodule that will perform the following build steps:

• run the xsd goal (in the generate-resources phase) to generate the XSDs from the specified view
model/DTOs

• use the maven-assembly-plugin to bundle the generated XSD files into a zip file.

• use the xjc-gen to generate corresponding DTO classes from the XSDs.

These are not the same as the original view models; they are provided as a convenience for

13

rgsvc.pdf#_rgsvc_api_JaxbService
ugbtb.pdf#_ugbtb_view-models
https://jaxb.java.net/2.2.4/docs/schemagen.html
rgant.pdf#_rgant-XmlJavaTypeAdapter
rgcms.pdf#_rgcms_schema-common
rg.pdf#_ugbtb_view-models_jaxb
rgcms.pdf#_rgcms_schema-common
rgsvc.pdf#_rgsvc_api_JaxbService
http://maven.apache.org/plugins/maven-assembly-plugin/

subscribers to marshall XML documents into Java classes, but running as a standalone process
(not part of the Isis app)

These two main responsibilities can then be placed into separate Maven profiles, for better
modularity. The diagram below shows the overall design:

For example, here is the pom.xml file for the (non-ASF) Isis addons' todoapp example app’s todoapp-
xsd submodule.

First, the usual boilerplate:

14

images/maven-plugin/xsd-goal.png
http://github.com/isisaddons/isis-app-todoapp

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.isisaddons.app</groupId>
 <artifactId>todoapp</artifactId>
 <version>1.14.0-SNAPSHOT</version>
 </parent>

 <artifactId>todoapp-xsd</artifactId>
 <name>Isis Addons ToDoApp XSD</name>

 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>todoapp-app</artifactId> ①
 </dependency>
 </dependencies>

 <profiles>
 <profile>
 <id>isis-xsd</id> ②
 ...
 </profile>
 <profile>
 <id>xjc</id> ③
 ...
 </profile>
 </profiles>
</project>

① depends on the rest of the application’s modules

② XSD generation, to run the xsd goal and then assemble into a zip file; within a profile for
modularity

③ XJC generation, to run the xjc to generate Java DTO classes from XSDs; within a profile for
modularity

5.1.1. XSD profile

The isis-xsd profile runs the xsd goal of the isis-maven-plugin; these are then zipped up by the
assembly plugin:

<profile>
 <id>isis-xsd</id>

15

 <activation>
 <property>
 <name>!skip.isis-xsd</name>
①
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.isis.tool</groupId>
 <artifactId>isis-maven-plugin</artifactId>
 <version>${isis.version}</version>
 <configuration>
 <appManifest>todoapp.dom.ToDoAppDomManifest</appManifest>
②
 <jaxbClasses>
③
 <jaxbClass>
todoapp.app.viewmodels.todoitem.v1_0.ToDoItemDto</jaxbClass>
 <jaxbClass>
todoapp.app.viewmodels.todoitem.v1_1.ToDoItemDto</jaxbClass>
 </jaxbClasses>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>todoapp-dom</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
④
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>16.0.1</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>generate-sources</phase>
⑤
 <goals>
 <goal>xsd</goal>
⑥
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
⑦
 <version>2.5.3</version>

16

 <configuration>
 <descriptor>src/assembly/dep.xml</descriptor>
⑧
 </configuration>
 <executions>
 <execution>
 <id>create-archive</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

① enabled unless skip.isis-xsd property specified

② specify the app manifest to bootstrap the Isis runtime within the maven plugin

③ enumerate all JAXB-annotated view models

④ workaround to avoid conflict with plexus-default

⑤ by default is bound to generate-resources, but bind instead to generate-sources if also running
the xjc profile: the XSD are an input to xjc, but it is bound by default to generate-sources and the
generate-sources phase runs before the generate-resources.

⑥ run the xsd goal

⑦ define the assembly plugin

⑧ assembles the XSD schemas into a zip file, as defined by the dep.xml file (see below).

The `dep.xml` file, referenced by the `assembly` plugin, is defined as:

17

<assembly xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2
 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
 <id>xsd</id>
 <formats>
 <format>zip</format>
 </formats>
 <fileSets>
 <fileSet>
 <directory>${project.build.directory}/generated-resources/isis-
xsd</directory> ①
 <outputDirectory>/</outputDirectory>
 </fileSet>
 </fileSets>
</assembly>

① the location that the xsd goal writes to.

5.1.2. XJC profile

The xjc profile reads the XSD generated by the xsd goal, and from it generates Java DTOs. Note that
this isn’t round-tripping: the original view model is only for use within the Isis app, whereas the
DTO generated from the XSDs is for use in a standalone context, eg in a Java subscriber on an event
bus.

The xjc profile is defined as:

<profile>
 <id>xjc</id>
 <activation>
 <property>
 <name>!skip.xjc</name>
①
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <version>0.12.3</version>
 <executions>
 <execution>
 <id>xjc-generate</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>generate</goal>

18

 </goals>
 </execution>
 </executions>
 <configuration>
 <removeOldOutput>true</removeOldOutput>
 <schemaDirectory>
②
 target/generated-resources/isis-
xsd/viewmodels.app.todoapp/todoitem
 </schemaDirectory>
 <schemaIncludes>
③
 <schemaInclude>v1_0/todoitem.xsd</schemaInclude>
 <schemaInclude>v1_1/todoitem.xsd</schemaInclude>
 </schemaIncludes>
 <catalog>src/main/resources/catalog.xml</catalog>
④
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
⑤
 <version>1.9.1</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>target/generated-sources/xjc</source>
⑥
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

① enabled unless skip.xjc property specified

② specifies the directory that the XSD schemas were generated to by the isis-maven-plugin

③ specify each of the XSDs to be processed

④ catalog file indicates the location of the referenced common schema XSDs.

⑤ the build-helper-maven-plugin adds the Java source generated by the xjc plugin so that it can be

19

_rgcms_schema-common

compiled and packaged as any other code

⑥ the location that the xjc plugin generates its source code.

The referenced catalog.xml file instructs the xjc plugin how to resolve referenced schema locations.
Only a reference for the Apache Isis common schema is likely to be needed:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog
 PUBLIC "-//OASIS//DTD Entity Resolution XML Catalog V1.0//EN"
 "http://www.oasis-open.org/committees/entity/release/1.0/catalog.dtd">
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <public publicId="http://isis.apache.org/schema/common"
 uri="http://isis.apache.org/schema/common/common.xsd"/>
①
</catalog>

① resolve the common schema from the Apache Isis website

5.2. To run
The plugin is activated by default, so is run simply using:

mvn package

This will generate the XSDs, the DTOs from the XSDs, and package up the XSDs into a ZIP file and
the generated DTO class files into a regular JAR package.

If for any reason you want to disable the generation of the DTOs, use:

mvn package -Dskip.xjc

If you want to disable the generation of both the XSDs and the DTOs, use:

mvn package -Dskip.xjc -Dskip.isis-xsd

20

_rgcms_schema-common

	Apache Isis Maven plugin
	Table of Contents
	Chapter 1. Apache Isis Maven plugin
	1.1. Other Guides

	Chapter 2. Introduction
	2.1. AppManifest

	Chapter 3. validate goal
	3.1. dom submodule
	3.2. To run
	3.3. Example of failure
	3.4. Custom validation rules
	3.5. 1.9.0 version

	Chapter 4. swagger goal
	4.1. integtest submodule
	4.2. To run

	Chapter 5. xsd goal
	5.1. xsd submodule
	5.2. To run

