
Configuration Properties

Table of Contents
1. Configuration Properties . 1

1.1. Other Guides . 1

2. Deployment Types . 2

2.1. Using the Wicket Viewer . 2

2.2. Restful Objects viewer only . 3

2.3. Overriding the deployment type . 3

3. Configuration Files . 4

4. Specifying components . 5

4.1. Viewer Configuration . 6

5. Configuring Core . 7

5.1. Domain Events . 7

5.2. Lifecycle Events . 7

5.3. UI Events. 8

5.4. Services . 8

5.5. Other Config Properties . 12

6. Configuring DataNucleus . 16

6.1. Configuration Properties . 16

6.2. persistence.xml . 17

6.3. Eagerly Registering Entities . 17

6.4. Persistence by Reachability . 17

6.5. Using JNDI DataSource . 19

Chapter 1. Configuration Properties
Apache Isis' own configuration properties are simple key-value pairs, typically held in the
WEBINF/isis.properties file and other related files. This guide describes how to configure an Apache
Isis application.



Configuration properties for the viewers can be found in the Wicket Viewer guide
and the RestfulObjects viewer guide. Likewise[details of configuring security
(Apache Shiro) can be found in the Security guide.

Also, note that by default the configuration values are part of the built WAR file.
Details on how to override these configuration properties externally for different
environments can be found in the Beyond the Basics guide, (deployment chapter).

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• DataNucleus object store

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties (this guide)

• Classes, Methods and Schema

• Apache Isis Maven plugin

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)

1

ugvw.pdf
ugvro.pdf
ugsec.pdf
ugbtb.pdf#_ugbtb_deployment
ugfun.pdf
ugvw.pdf
ugvro.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgsvc.pdf
rgcms.pdf
rgmvn.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

Chapter 2. Deployment Types
Apache Isis distinguishes between the application being run in development mode vs running in
production mode. The framework calls this the "deployment type" (corresponding internally to the
DeploymentType class).

(For mostly historical reasons) development mode is actually called SERVER_PROTOTYPE, while
production mode is called just SERVER. (There is also a deprecated mode called SERVER_EXPLORATION;
for all intents and purposes this can considered as an alias of SERVER_PROTOTYPE).

When running in development/prototyping mode, certain capabilities are enabled; most notably
any actions restricted to prototyping mode (using @Action#restrictTo()) will be available.

2.1. Using the Wicket Viewer
Most of the you’re likely to run Apache Isis using the Wicket viewer. In this case Apache Isis'
"deployment type" concept maps to Wicket’s "configuration" concept:

Table 1. Apache Isis' deployment type corresponds to Apache Wicket’s configuration

Apache Isis
(Deployment Type)

Apache Wicket
(Configuration)

Notes

SERVER_PROTOTYPE development running in development/prototyping mode

SERVER deployment running in production mode

Wicket’s mechanism for specifying the "configuration" is to use a context parameter in web.xml;
Apache Isis automatically infers its own deployment type from this. In other words:

• to specify SERVER (production) mode, use:

web.xml

<context-param>
 <param-name>configuration</param-name>
 <param-value>deployment</param-value>
</context-param>

• to specify SERVER_PROTOTYPING (development) mode, use:

web.xml

<context-param>
 <param-name>configuration</param-name>
 <param-value>development</param-value>
</context-param>

2

rgant.pdf#_rgant-Action_restrictTo
ugvw.pdf

2.2. Restful Objects viewer only
Most Apache Isis applications will consist of at least the Wicket viewer and optionally the
RestfulObjects viewer. When both viewers are deployed in the same app, then the bootstrapping is
performed by Wicket, and so the deployment type is configured as described in the previous
section.

In some cases though you may be using Apache Isis to provide a REST API only, that is, you won’t
have deployed the Wicket viewer. In these cases your app will be bootstrapped using Apache Isis'
IsisWebAppBootstrapper.

In this case the deployment type is specified through an Apache Isis-specific context parameter,
called isis.deploymentType:

• to specify SERVER (production) mode, use:

web.xml

<context-param>
 <param-name>isis.deploymentType</param-name>
 <param-value>server</param-value>
</context-param>

• to specify SERVER_PROTOTYPE (development) mode, use:

web.xml

<context-param>
 <param-name>isis.deploymentType</param-name>
 <param-value>server-prototype</param-value>
</context-param>

2.3. Overriding the deployment type
If bootstrapping the application using Apache Isis' org.apache.isis.WebServer then it is possible to
override the deployment type using the -t (or --type) flag.

For example:

java -jar ... org.apache.isis.WebServer -t SERVER

where "…" is the (usually rather long) list of JAR files and class directories that will make up your
application.

This works for both the Wicket viewer and the RestfulObjects viewer.

3

ugvw.pdf
ugvro.pdf
ugbtb.pdf#_ugbtb_web-xml_servlet-context-listeners
ugbtb.pdf#_ugbtb_web-xml_servlet-context-listeners
ugbtb.pdf#_ugbtb_deployment_cmd-line
ugvw.pdf
ugvro.pdf

Chapter 3. Configuration Files
When running an Apache Isis webapp, configuration properties are read from configuration files
held in the WEB-INF directory.

The WEBINF/isis.properties file is always read and must exist.

In addition, the following other properties are searched for and if present also read:

• viewer_wicket.properties - if the Wicket viewer is in use

• viewer_restfulobjects.properties - if the RestfulObjects viewer is in use

• viewer.properties - for any other viewer configuration (but there are none currently)

• persistor_datanucleus.properties - assuming the JDO/DataNucleus objectstore is in use

• persistor.properties - for any other objectstore configuration.

This typically is used to hold JDBC URLs, which is arguably a slight violation of the file (because
there’s nothing in Apache Isis to say that persistors have to use JDBC. However, it is generally
convenient to put these JDBC settings into a single location. If you want, they could reside inin
any of persistor_datanucleus.properties, persistor.properties or (even) isis.properties

• authentication_shiro.properties, authorization_shiro.properties

assuming the Shiro Security is in use (but there are no security-related config properties
currently; use shiro.ini for Shiro config)

• authentication.properties, authorization.properties

for any other security-related config properties (but there are none currently).

You can if you wish simply store all properties in the isis.properties file; but we think that
breaking properties out into sections is preferable.

4

ugvw.pdf
ugvro.pdf

Chapter 4. Specifying components
Bootstrapping an Apache Isis application involves identifying both:

• the major components (authentication, persistence mechanisms, viewers) of Apache Isis, and
also

• specifying the domain services and persistent entities that make up the application itself.

As of 1.9.0 there are two different ways to perform this bootstrapping. The recommended (newer)
approach is to use an AppManifest, specified either programmatically or through the configuration
properties. This allows the components, services and entities to be specified from a single class.
The alternative (and older, pre 1.9.0) approach is to specify this information individually, through
configuration properties.

To specify the AppManifest as a configuration property, use:

Table 2. Core Configuration Properties (ignored if isis.appManifest is present)

Property Value
(default value)

Implements

isis.appManifest FQCN o.a.i.applib.AppManifest
By convention this implementation resides in an
myapp-app Maven module (as opposed to myapp-
dom or myapp-fixture). See the SimpleApp
archetype for details.

From this the framework can determine the domain services, persistent entities and security
(authentication and authorization) mechanisms to use. Other configuration (including fixtures) can
also be specified this way.

If the AppManifest approach is not being used, then the following configuration properties are used
to specify the major components of Apache Isis to use:

Table 3. Core Configuration Properties (ignored if isis.appManifest is present)

Property Value
(default value)

Implements

isis.authentication shiro, bypass,
FQCN
(shiro)

o.a.i.core.runtime.authentication.
AuthenticationManagerInstaller
This property is IGNORED if the
isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

isis.authorization shiro, bypass,
FQCN
(shiro)

o.a.i.core.runtime.authorization.
AuthorizationManagerInstaller
This property is IGNORED if the
isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

5

rgcms.pdf#_rgcms_classes_super_AppManifest
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
rgcms.pdf#_rgcms_classes_super_AppManifest
rgcms.pdf#_rgcms_classes_super_AppManifest

Property Value
(default value)

Implements

isis.persistor datanucleus
(datanucleus)

o.a.i.core.runtime.installerregistry.installer
api. PersistenceMechanismInstaller This
property is IGNORED completely in 1.9.0+; the
datanucleus implementation is always used.

isis.services-installer configuration,
configuration-
and-annotation,
FQCN
(configuration)

org.apache.isis.core.runtime.services.
ServicesInstaller
The mechanism to discover and load domain
services: * configuration-and-annotation will
search for @DomainService-annotated classes and
also read from isis.services configuration
property * configuration will only read from the
isis.services configuration property.
* Otherwise an alternative implementation of
the
o.a.i.core.runtime.services.ServicesInstaller
internal API can be provided.
This property is IGNORED if the
isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically. This property is also
IGNORED completely in 1.13.0+; the
configuration-and-annotation implementation is
always used.


The values "shiro", "bypass" etc are actually aliases for concrete
implementations. It is also possible to specify a fully qualified class name to
replace either of the two security components, implementing the appropriate
interface.

If the AppManifest is not being used then there are number of other configuration properties that
also must be specified: isis.services,
isis.services.ServicesInstallerFromAnnotation.packagePrefix and
isis.persistor.datanucleus.RegisterEntities.packagePrefix and isis.fixtures; these are listed in
the sections below.

4.1. Viewer Configuration
Viewers are specified by way of the filters and servlets in the web.xml file; these are not
bootstrapped by the framework, rather it is the other way around.

In versions prior to 1.13.0, the "isis.viewers" context parameter was used to hint which
configuration files should be read (corresponding to the viewers in use). As of 1.13.0, however, the
configuration property has no effect: the viewer_wicket.properties and
viewer_restulobjects.properties are always loaded if available.

6

rgcms.pdf#_rgcms_classes_super_AppManifest
ugbtb.pdf#_ugbtb_web-xml

Chapter 5. Configuring Core
This section lists the core/runtime configuration properties recognized by Apache Isis.


Configuration properties for the JDO/DataNucleus objectstore can be found in the
Configuring DataNucleus section later in this chapter, while configuration
properties for the viewers can be found in the their respective chapters, here for
Wicket viewer, and here for the Restful Objects viewer.

5.1. Domain Events
Table 4. Core Configuration Properties for Domain Events

Property Value
(default
value)

Description

isis.reflector.facet.
actionAnnotation.
domainEvent.postForDefault

true,false
(true)

Whether an event should be posted if
@Action#domainEvent() is not specified (is set to
ActionDomainEvent.Default).

isis.reflector.facet.
collectionAnnotation.
domainEvent.postForDefault

true,false
(true)

Whether an event should be posted if
@Collection#domainEvent() is not specified (is set
to CollectionDomainEvent.Default).

isis.reflector.facet.
propertyAnnotation.
domainEvent.postForDefault

true,false
(true)

Whether an event should be posted if
@Property#domainEvent() is not specified (is set to
PropertyDomainEvent.Default).

5.2. Lifecycle Events
Table 5. Core Configuration Properties for Lifecycle Events

Property Value
(default
value)

Description

isis.reflector.facet.
domainObjectAnnotation.
createdLifecycleEvent.
postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObject#createdLifecycleEvent() is not
specified (is set to ObjectCreatedEvent.Default).

isis.reflector.facet.
domainObjectAnnotation.
loadedLifecycleEvent.
postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObject#loadedLifecycleEvent() is not
specified (is set to ObjectLoadedEvent.Default).

isis.reflector.facet.
domainObjectAnnotation.
persistingLifecycleEvent.
postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObject#persistingLifecycleEvent() is not
specified (is set to
ObjectPersistingEvent.Default).

7

ugvw.pdf#_ugvw_configuration-properties
ugvw.pdf#_ugvw_configuration-properties
ugvro.pdf#_ugvro_configuration-properties
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Collection_domainEvent
rgant.pdf#_rgant-Property_domainEvent
rgant.pdf#_rgant-DomainObject_createdLifecycleEvent
rgant.pdf#_rgant-DomainObject_loadedLifecycleEvent
rgant.pdf#_rgant-DomainObject_persistingLifecycleEvent

Property Value
(default
value)

Description

isis.reflector.facet.
domainObjectAnnotation.
persistedLifecycleEvent.
postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObject#persistedLifecycleEvent() is not
specified (is set to ObjectPersistedEvent.Default).

isis.reflector.facet.
domainObjectAnnotation.
removingLifecycleEvent.
postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObject#removingLifecycleEvent() is not
specified (is set to ObjectRemovingEvent.Default).

isis.reflector.facet.
domainObjectAnnotation.
updatingLifecycleEvent.
postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObject#updatingLifecycleEvent() is not
specified (is set to ObjectUpdatingEvent.Default).

isis.reflector.facet.
domainObjectAnnotation.
updatedLifecycleEvent.
postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObject#updatedLifecycleEvent() is not
specified (is set to ObjectUpdatedEvent.Default).

5.3. UI Events
Table 6. Core Configuration Properties for UI Events

Property Value
(default
value)

Description

isis.reflector.facet.
domainObjectLayoutAnnotation.
cssClassUiEvent.postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObjectLayout#cssClassUiEvent() is not
specified (is set to CssClassUiEvent.Default).

isis.reflector.facet.
domainObjectLayoutAnnotation.
iconUiEvent.postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObjectLayout#iconUiEvent() is not
specified (is set to IconUiEvent.Default).

isis.reflector.facet.
domainObjectLayoutAnnotation.
titleUiEvent.postForDefault

true,false
(true)

Whether an event should be posted if
@DomainObjectLayout#titleUiEvent() is not
specified (is set to TitleUiEvent.Default).

5.4. Services
Table 7. Core Configuration Properties for Services

8

rgant.pdf#_rgant-DomainObject_persistedLifecycleEvent
rgant.pdf#_rgant-DomainObject_removingLifecycleEvent
rgant.pdf#_rgant-DomainObject_updatingLifecycleEvent
rgant.pdf#_rgant-DomainObject_updatedLifecycleEvent
rgant.pdf#_rgant-DomainObjectLayout_cssClassUiEvent
rgant.pdf#_rgant-DomainObjectLayout_iconUiEvent
rgant.pdf#_rgant-DomainObjectLayout_titleUiEvent

Property Value
(default
value)

Description

isis.services FQCN,FQCN2,… Fully qualified class names of classes to be
instantiated as domain services.
Each entry can be optionally prefixed by "n:"
specifying the relative order on the menu
(corresponds to
@DomainServiceLayout#menuOrder()). This
property is IGNORED if the isis.appManifest
configuration property is specified, or if an
AppManifest is provided programmatically.

isis.services.
applicationFeatures.init

lazy, eager
(lazy)

Whether the application features repository
(which surfaces the framework’s metamodel)
should be initialized lazily or eagerly.
Lazy initialization can speed up bootstrapping,
useful while developing and running tests. The
default prior to 1.13.0 was eager initialization.

isis.services.
audit.objects

all, none
(all)

Whether the changed properties of objects
should be automatically audited (for objects
annotated with
@DomainObject(auditing=Auditing.AS_CONFIGURED).

isis.services.
command.actions

all, ignoreSafe,
none (all)

Whether action invocations should be
automatically reified into commands (for
actions annotated with
@Action(command=CommandReification.AS_CONFIGUR
ED).
ignoreQueryOnly is an alias for ignoreSafe.

isis.services.
command.properties

all, none (all) (Whether property edits should be automatically
reified into commands (for properties annotated
with
@Property(command=CommandReification.AS_CONFIG
URED).

isis.services.
container.disableAutoFlush

true,false
(false)

Whether the DomainObjectContainer should
automatically flush pending changes prior to
querying (via allMatches(), firstMatch() and so
on).

isis.services.
ContentNegotiation-
ServiceXRoDomainType
.prettyPrint

true,false
(depends)

If a domain object has been mapped to the
specified JAXB x-ro-domain-type, then
determines whether the result is pretty-printed
or not.
+ If no configuration property is available, then
the defaults is determined by the deployment
type: production mode disables pretty printing,
while prototype mode enables it.

9

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_super_AppManifest
rgant.pdf#_rgant-DomainObject_auditing
rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Property_command
rgant.pdf#_rgant-Property_command

Property Value
(default
value)

Description

isis.service.
email.tls.enabled

true,false
(true)

Whether to enable TLS for the email SMTP
connection (used by EmailService).
NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

isis.service.
email.sender.hostname

host
(smtp.gmail.com
)

The hostname of the external SMTP provider
(used by EmailService).
NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

isis.service.
email.port

port number
(587)

The port number for the SMTP service on the the
external SMTP host (used by EmailService).
NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

isis.service.
email.sender.address

email address The email address to use for sending out email
(used by EmailService). Mandatory.
NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

isis.service.
email.sender.password

email
password

The corresponding password for the email
address to use for sending out email (used by
EmailService). Mandatory.
NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

isis.services.
eventbus.implementation

guava, axon,
FQCN (guava)

which implementation to use by the
EventBusService as the underlying event bus.

isis.services.
eventbus.allowLateRegistration

true,false
(false)

whether a domain service can register with the
EventBusService after any events have posted.
Since this almost certainly constitutes a bug in
application code, by default this is disallowed.

isis.services.
exceprecog.logRecognizedExcept
ions

true,false
(false)

whether recognized exceptions should also be
logged.
Generally a recognized exception is one that is
expected (for example a uniqueness constraint
violated in the database) and which does not
represent an error condition. This property logs
the exception anyway, useful for debugging.

10

rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EventBusService

Property Value
(default
value)

Description

isis.services.
ExceptionRecognizerComposite-
ForJdoObjectStore.disable

true,false
(false)

whether to disable the default recognizers
registered by
ExceptionRecognizerCompositeForJdoObjectStore.
This implementation provides a default set of
recognizers to convert RDBMS constraints into
user-friendly messages. In the (probably
remote) chance that this functionality isn’t
required, they can be disabled through this flag.

isis.services.
injector.injectPrefix

true,false
(false)

(Whether the framework should support
inject…() as a prefix for injecting domain
services into other domain objects. + By default
this is disabled. The default prior to 1.13.0 was
enabled. If the setting is left as disabled then
this may reduce application start-up times.

isis.services.
injector.setPrefix

true,false
(true)

Whether the framework should support set…()
as a prefix for injecting domain services into
other domain objects. + By default this is
enabled (no change in 1.13.0). If the setting is
changed to disabled then this may reduce
application start-up times.

isis.services.
publish.objects

all, none
(all)

Whether changed objects should be
automatically published (for objects annotated
with
@DomainObject(publishing=Publishing.AS_CONFIGU
RED).

isis.services.
publish.actions

all, ignoreSafe,
none (none)

Whether actions should be automatically
published (for actions annotated with
@Action(publishing=Publishing.AS_CONFIGURED).

isis.services.
publish.properties

all, none (none) Whether properties should be automatically
published (for properties annotated with
@Property(publishing=Publishing.AS_CONFIGURED).

isis.services.
ServicesInstallerFromAnnotatio
n.
packagePrefix

fully qualified
package names
(CSV)

to search for domain services (including all
subpackages). This property is IGNORED if the
isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

isis.services.
translation.po.mode

read,write Whether to force the TranslationService into
either read or write mode.
See i18n support to learn more about the
translation service.

11

rgant.pdf#_rgant-DomainObject_publishing
rgant.pdf#_rgant-DomainObject_publishing
rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-Action_publishing
rgcms.pdf#_rgcms_classes_super_AppManifest
ugbtb.pdf#_ugbtb_i18n

5.5. Other Config Properties
Table 8. Other Core Configuration Properties

Property Value
(default
value)

Description

isis.objects.
editing

true,false
(true)

Whether objects' properties and collections can
be edited directly (for objects annotated with
@DomainObject#editing()); see below for further
discussion.

isis.persistor.
disableConcurrencyChecking

true,false
(false)

Disables concurrency checking globally.
Only intended for "emergency use" as a
workaround while pending fix/patch to Apache
Isis itself. (Note that there is no "datanucleus" in
the property).

isis.reflector.facet.
cssClass.patterns

regex:css1,
regex2:css2,…

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
delete.*) and the value is a Bootstrap CSS button
class (eg btn-warning) to be applied (as per
`@CssClass()) to all action members matching
the regex.
See UI hints for more details.

isis.reflector.facet.
cssClassFa.patterns

regex:fa-
icon,regex2:fa-
icon2,…

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
create.*) and the value is a font-awesome icon
name (eg fa-plus) to be applied (as per
@CssClassFa()) to all action members matching
the regex.
See UI hints for more details.

isis.reflector.facet.
filterVisibility

true,false
(true)

Whether objects should be filtered for visibility.
See section below for further discussion.

isis.reflector.facets FQCN This property is now ignored.
+ To customize the programming model, use
facets.exclude and facets.include. See
finetuning the programming model for more
details.

isis.reflector.facets.
exclude

FQCN,FQCN2,… Fully qualified class names of (existing, built-in)
facet factory classes to be included to the
programming model.
See finetuning the programming model for more
details.

12

rgant.pdf#_rgant-DomainObject_editing
http://getbootstrap.com/css/
ugfun.pdf#_ugfun_how-tos_ui-hints_action-icons-and-css
http://fortawesome.github.io/Font-Awesome/icons/
ugfun.pdf#_ugfun_how-tos_ui-hints_action-icons-and-css
ugbtb.pdf#_ugbtb_programming-model_finetuning
ugbtb.pdf#_ugbtb_programming-model_finetuning

Property Value
(default
value)

Description

isis.reflector.facets.
ignoreDeprecated

true,false
(false)

Whether deprecated facets should be ignored or
honoured.
+ By default all deprecated facets are honoured;
they remain part of the metamodel. If instead
this property is set to true then the facets are
simply not loaded into the metamodel and their
semantics will be excluded.
+ In most cases this should reduce the start-up
times for the application. However, be aware
that this could also substantially alter the
semantics of your application. To be safe, we
recommend that you first run your application
using isis.reflector.validator.allowDeprecated
set to false; if any deprecated annotations etc.
are in use, then the app will fail-fast and refuse
to start.

isis.reflector.facets.
include

FQCN,FQCN2,… Fully qualified class names of (new, custom)
facet factory classes to be included to the
programming model.
See finetuning the programming model for more
details.

isis.reflector.
layoutMetadataReaders

FQCN,FQCN2,… Fully qualified class names of classes to be
instantiated to read layout metadata, as used in
for dynamic layouts.
See Layout Metadata Reader for more
information.

isis.reflector.validator FQCN Custom implementation of MetaModelValidator
(in the
org.apache.isis.core.metamodel.specloader.vali
dator package)
See Custom Validator to learn more.

isis.reflector.validator.
allowDeprecated

true,false
(true)

Whether deprecated annotations or naming
conventions are tolerated or not. If not, then a
metamodel validation error will be triggered,
meaning the app won’t boot (fail-fast).
+ See also
isis.reflector.facets.ignoreDeprecated.

isis.viewers.
paged.parented

positive integer
(12)

Default page size for parented collections (as
owned by an object, eg Customer#getOrders())

isis.viewers.
paged.standalone

positive integer
(25)

Default page size for standalone collections (as
returned from an action invocation)

isis.viewers.
propertyLayout.labelPosition

TOP, LEFT
(LEFT)

Default for label position for all properties if not
explicitly specified using
@PropertyLayout#labelPosition()

13

ugbtb.pdf#_ugbtb_programming-model_finetuning
ugfun.pdf#_ugfun_object-layout_dynamic
ugbtb.pdf#_ugbtb_programming-model_layout-metadata-reader
ugbtb.pdf#_ugbtb_programming-model_custom-validator
rgant.pdf#_rgant-PropertyLayout_labelPosition

5.5.1. Filtering visibility

The framework provides the isis.reflector.facet.filterVisibility configuration property that
influences whether a returned object is visible to the end-user:

• Action invocations:

If an action returns a collection that includes the object, then the object will be excluded from the
list when rendered. If it returns a single object and the user does not have access to that object, then
the action will seemingly return null

• Collections:

If a parent object has a collection references another object to which the user does not have access,
then (as for actions) the object will not be rendered in the list

• Properties:

If an parent object has a (scalar) reference some other object to which the user does not have
access, then the reference will be rendered as empty.

• Choices and autoComplete lists:

If an object is returned in a list of choices or within an auto-complete list, and the user does not
have access, then it is excluded from the rendered list.

The original motivation for this feature was to transparently support such features as multi-
tenancy (as per the (non-ASF) Isis addons' security module). That is, if an entity is logically "owned"
by a user, then the multi-tenancy support can be arranged to prevent some other user from viewing
that object.

By default this configuration property is enabled. To disable the visibility filtering, set the
appropriate configuration property to false:

isis.reflector.facet.filterVisibility=false

Filtering is supported by the Wicket viewer and the Restful Objects viewer, and also by the
WrapperFactory domain service (provided the wrapper’s execution mode is not "skip rules").



In order for the framework to perform this filtering of collections, be aware that
the framework takes a copy of the original collection, filters on the collection, and
returns that filtered collection rather than the original.

There are no major side-effects from this algorithm, other than the fact that the
referenced objects will (most likely) need to be resolved in order to determine if
they are visible. This could conceivably have a performance impact in some
cases.

14

http://github.com/isisaddons/isis-module-security
ugvw.pdf
ugvro.pdf
rgsvc.pdf#_rgsvc_api_WrapperFactory

5.5.2. objects.editing

This configuration property in effect allows editing to be disabled globally for an application:

isis.objects.editing=false

We recommend enabling this feature; it will help drive out the underlying business operations
(processes and procedures) that require objects to change; these can then be captured as business
actions.

5.5.3. propertyLayout.labelPosition

If you want a consistent look-n-feel throughout the app, eg all property labels to the top, then it’d be
rather frustrating to have to annotate every property.

Instead, a default can be specified in isis.properties:

isis.viewers.propertyLayout.labelPosition=TOP

or

isis.viewers.propertyLayout.labelPosition=LEFT

If these are not present then Apache Isis will render according to internal defaults. At the time of
writing, this means labels are to the left for all datatypes except multiline strings.

15

Chapter 6. Configuring DataNucleus
Apache Isis programmatically configures DataNucleus; any Apache Isis properties with the prefix
isis.persistor.datanucleus.impl are passed through directly to the JDO/DataNucleus objectstore
(with the prefix stripped off, of course).

DataNucleus will for itself also and read the META-INF/persistence.xml; at a minimum this defines
the name of the "persistence unit". n theory it could also hold mappings, though in Apache Isis we
tend to use annotations instead.

Furthermore, DataNucleus will search for various other XML mapping files, eg mappings.jdo. A full
list can be found here. The metadata in these XML can be used to override the annotations of
annotated entities; see Overriding JDO Annotatons for further discussion.

6.1. Configuration Properties
These configuration properties are typically stored in WEB-INF/persistor_datanucleus.properties.
However, you can place all configuration properties into WEB-INF/isis.properties if you wish (the
configuration properties from all config files are merged together).

6.1.1. Configuration Properties for Apache Isis itself

Table 9. JDO/DataNucleus Objectstore Configuration Properties

Property Value
(default value)

Description

isis.persistor.
datanucleus.
classMetadataLoadedListener

FQCN The default
(o.a.i.os.jdo.dn.CreateSchemaObjectFromClassMe
tadata) creates a DB schema object

isis.persistor.datanucleus.
RegisterEntities.packagePrefix

fully qualified
package names
(CSV)

that specifies the entities early rather than allow
DataNucleus to find the entities lazily. Further
discussion below. This property is IGNORED if
the isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

isis.persistor.datanucleus.
PublishingService.serializedFo
rm

zipped

6.1.2. Configuration Properties passed through directly to DataNucleus.

Table 10. JDO/DataNucleus Objectstore Configuration Properties

Property Value
(default value)

Description

isis.persistor.datanucleus.imp
l.*

Passed through directly to Datanucleus (with
isis.persistor.datanucleus.impl prefix stripped)

16

http://www.datanucleus.org/products/datanucleus/jdo/metadata.html
ugbtb.pdf#_ugbtb_other-techniques_overriding-jdo-annotations
rgcms.pdf#_rgcms_classes_super_AppManifest

Property Value
(default value)

Description

isis.persistor.datanucleus.imp
l.
datanucleus.persistenceByReach
abilityAtCommit

false We recommend this setting is disabled.
Further discussion below.

6.2. persistence.xml

 TODO

6.3. Eagerly Registering Entities
Both Apache Isis and DataNucleus have their own metamodels of the domain entities. Apache Isis
builds its metamodel by walking the graph of types of the domain services. The JDO/DataNucleus
objectstore then takes these types and registers them with DataNucleus.

In some cases, though, not every entity type is discoverable from the API of the service actions. This
is especially the case if you have lots of subtypes (where the action method specifies only the
supertype). In such cases the Isis and JDO metamodels is built lazily, when an instance of that
(sub)type is first encountered.

Apache Isis is quite happy for the metamodel to be lazily created, and - to be fair - DataNucleus also
works well in most cases. In some cases, though, we have found that the JDBC driver (eg HSQLDB)
will deadlock if DataNucleus tries to submit some DDL (for a lazily discovered type) intermingled
with DML (for updating). In any case, it’s probably not good practice to have DataNucleus work this
way.

The framework thus provide mechanisms to search for all @PersistenceCapable entities under
specified package(s), and registers them all eagerly. In fact there are two:

• as of 1.9.0 the recommended (and simpler) approach is to specify an AppManifest, either as a
isis.appManifest configuration property or programmatically.

• for earlier versions the isis.persistor.datanucleus.RegisterEntities.packagePrefix

configuration property can be specified. To bootstrap as a webapp this is usually specified in
persistor_datanucleus.properties. (This is also supported in 1.9.0 if no AppManifest is specified.
For integration testing this can be specified programatically.

Further discussion on specifying the package(s) in integration testing (for either approach) can be
found in the user guide.

6.4. Persistence by Reachability
By default, JDO/DataNucleus supports the concept of persistence-by-reachability. That is, if a non-
persistent entity is associated with an already-persistent entity, then DataNucleus will detect this
and will automatically persist the associated object. Put another way: there is no need to call
Apache Isis' DomainObjectContainer#persist(.) or DomainObjectContainer#persistIfNotAlready(.)

17

rgcms.pdf#_rgcms_classes_super_AppManifest
ugtst.pdf#_ugtst_integ-test-support_bootstrapping
http://www.datanucleus.org/products/datanucleus/jdo/orm/cascading.html

methods.

However, convenient though this feature is, you may find that it causes performance issues.


DataNucleus' persistence-by-reachability may cause performance issues. We
strongly recommend that you disable it.

One scenario in particular where this performance issues can arise is if your entities implement the
java.lang.Comparable interface, and you have used Apache Isis' ObjectContracts utility class. The
issue here is that ObjectContracts implementation can cause DataNucleus to recursively rehydrate a
larger number of associated entities. (More detail below).

We therefore recommend that you disable persistence-by-reachability by adding the following to
persistor_datanucleus.properties:

isis.persistor.datanucleus.impl.datanucleus.persistenceByReachabilityAtCommit=false

This change has been made to the SimpleApp archetype

If you do disable this feature, then you will (of course) need to ensure that you explicitly persist all
entities using the DomainObjectContainer#persist(.) or
DomainObjectContainer#persistIfNotAlready(.) methods.

6.4.1. The issue in more detail

Consider these entities (yuml.me/b8681268):

In the course of a transaction, the Agreement entity is loaded into memory (not necessarily
modified), and then new AgreementRoles are associated to it.

All these entities implement Comparable using ObjectContracts, and the implementation of
AgreementRole's (simplified) is:

public class AgreementRole {
 ...
 public int compareTo(AgreementRole other) {
 return ObjectContracts.compareTo(this, other, "agreement","startDate",
"party");
 }
}

while Agreement's is implemented as:

18

rgcms.pdf#_rgcms_classes_utility_ObjectContracts
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
http://yuml.me/edit/b8681268

public class Agreement {
 ...
 public int compareTo(Agreement other) {
 return ObjectContracts.compareTo(this, other, "reference");
 }
}

and Party's is similarly implemented as:

public class Party {
 ...
 public int compareTo(Party other) {
 return ObjectContracts.compareTo(this, other, "reference");
 }
}

DataNucleus’s persistence-by-reachability algorithm adds the AgreementRole instances into a
SortedSet, which causes AgreementRole#compareTo() to fire:

• the evaluation of the "agreement" property delegates back to the Agreement, whose own
Agreement#compareTo() uses the scalar reference property. As the Agreement is already in-memory,
this does not trigger any further database queries

• the evaluation of the "startDate" property is just a scalar property of the AgreementRole, so will
already in-memory

• the evaluation of the "party" property delegates back to the Party, whose own Party#compareTo()
requires the uses the scalar reference property. However, since the Party is not yet in-memory,
using the reference property triggers a database query to "rehydrate" the Party instance.

In other words, in figuring out whether AgreementRole requires the persistence-by-reachability
algorithm to run, it causes the adjacent associated entity Party to also be retrieved.

6.5. Using JNDI DataSource
Isis' JDO objectstore can be configured either to connect to the database using its own connection
pool, or by using a container-managed datasource.

6.5.1. Application managed

Using a connection pool managed directly by the application (that is, by Apache Isis' JDO objectstore
and ultimately by DataNucleus) requires a single set of configuration properties to be specified.

In the WEB-INF\persistor_datanucleus.properties file, specify the connection driver, url, username
and password.

For example:

19

isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionDriverName=net.sf.log4jdbc.
DriverSpy
isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionURL=jdbc:log4jdbc:hsqldb:me
m:test
isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionUserName=sa
isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionPassword=

Those configuration properties that start with the prefix isis.persistor.datanucleus.impl. are
passed through directly to DataNucleus (with the prefix removed).

6.5.2. Container managed (JNDI)

Using a datasource managed by the servlet container requires three separate bits of configuration.

Firstly, specify the name of the datasource in the WEB-INF\persistor_datanucleus.properties file. For
example:

If connection pool settings are also present in this file, they will simply be ignored. Any other
configuration properties that start with the prefix isis.persistor.datanucleus.impl. are passed
through directly to DataNucleus (with the prefix removed).

Secondly, in the WEB-INF/web.xml, declare the resource reference:

<resource-ref>
 <description>db</description>
 <res-ref-name>jdbc/simpleapp</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Finally, declare the datasource as required by the servlet container. For example, if using Tomcat 7,
the datasource can be specified by adding the following to $TOMCAT_HOME/conf/context.xml:

<Resource name="jdbc/simpleapp"
 auth="Container"
 type="javax.sql.DataSource"
 maxActive="100"
 maxIdle="30"
 maxWait="10000"
 username="sa"
 password="p4ssword"
 driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
 url="jdbc:sqlserver://127.0.0.1:1433;instance=.;databaseName=simpleapp"/>

You will also need to make sure that the JDBC driver is on the servlet container’s classpath. For
Tomcat, this means copying the driver to $TOMCAT_HOME/lib.

20


According to Tomcat’s documentation, it is supposedly possible to copy the
conf/context.xml to the name of the webapp, eg conf/mywebapp.xml, and scope the
connection to that webapp only. I was unable to get this working, however.

21

	Configuration Properties
	Table of Contents
	Chapter 1. Configuration Properties
	1.1. Other Guides

	Chapter 2. Deployment Types
	2.1. Using the Wicket Viewer
	2.2. Restful Objects viewer only
	2.3. Overriding the deployment type

	Chapter 3. Configuration Files
	Chapter 4. Specifying components
	4.1. Viewer Configuration

	Chapter 5. Configuring Core
	5.1. Domain Events
	5.2. Lifecycle Events
	5.3. UI Events
	5.4. Services
	5.5. Other Config Properties

	Chapter 6. Configuring DataNucleus
	6.1. Configuration Properties
	6.2. persistence.xml
	6.3. Eagerly Registering Entities
	6.4. Persistence by Reachability
	6.5. Using JNDI DataSource

