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Chapter 1. Classes, Methods and Schema
This reference guide lists and describes various elements of the the Apache Isis Programming
Model, specifically reserved and prefix methods (such as title() and validate…()) and various
utility and supporting classes.

It also describes the XSD schema defined by Apache Isis.  One use case is for the JAXB serialization
of view models.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties

• Classes, Methods and Schema (this guide)

• Apache Isis Maven plugin

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)
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Chapter 2. Methods
The Apache Isis metamodel is built up from declaratively (ie, annotations) and imperatively, from
"supporting" methods and other reserved methods.

This chapter documents the supporting methods and the reserved methods.  It also documents
(separately) the reserved methods that act as callback hooks into the persistence lifecycle of domain
entities.

2.1. Supporting Method Prefixes
Supporting methods are those that are associated with properties, collections and actions,
providing additional imperative business rule checking and behaviour to be performed when the
user interacts with those object members.

This association is performed by name matching.  Thus, a property called "firstName", derived from
a method getFirstName() may have supporting methods hideFirstName(), disableFirstName() and
validateFirstName().  Supporting methods are, therefore, each characterized by their own
particular prefix.



Using name matching to associate supporting methods generally works very well,
but of course if an object member’s method is renamed, there’s always the risk
that the developer forgets to rename the supporting method; the supporting
methods become "orphaned".

Apache Isis checks for this automatically, and will fail-fast (fail to boot) if any
orphaned methods are located.  A suitable error message is logged so that the
issue can be easily diagnosed.

The table below lists the method prefixes that are recognized as part of Apache Isis' default
programming model.

Table 1. Recognized Method Prefixes

Prefix Object Proper
ty

Collecti
on

Action Action
Param

Description

addTo…() Y add object to a collection 
[NOTE] ==== Directly mutable
collections are not currently
supported by the Wicket viewer.
==== See also removeFrom…()`

autoComplete…() Y Y Return a list of matching elements
for a property or an action
parameter.
Alternatively, can specify for a
class using @DomainObject
#autoCompleteRepository
See also choices…()
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Prefix Object Proper
ty

Collecti
on

Action Action
Param

Description

choices…() Y Y Provide list of choices for a
property or action parameter.
See also autoComplete…().

clear…() Y Clear a property (set it to null).
Allows business logic to be placed
apart from the setter.
See also modify…()

default…() Y Y Default value for a property or an
action parameter.

disable…() Y Y Y Y Disables (makes read-only) a
property, a collection or an action.

get…() Y Y Access the value of a property or
collection.
See also set…().

hide…() Y Y Y Hides a property, a collection or an
action.

modify…() Y Modify a property (set it to a non-
null) value.
Allows business logic to be placed
apart from the setter.
See also clear…()`.

removeFrom…() Y remove object from a collection.
[NOTE] ==== Directly mutable
collections are not currently
supported by the Wicket viewer.
==== See also addTo…()`

set…() Y Y Sets the value of a property or a
collection.

validate…() Y Y Y Check that a proposed value of a
property or a set of action
parameters or a single action
parameter is valid.
See also validateAddTo…() and
validateRemoveFrom…() to validate
modifications to collections.

validate
AddTo…()

Y Check that a proposed object to
add to a collection is valid.
[NOTE] ==== Directly mutable
collections are not currently
supported by the Wicket viewer.
==== See also validateRemoveFrom…
(), and validate…() for properties
and actions.
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Prefix Object Proper
ty

Collecti
on

Action Action
Param

Description

validate
RemoveFrom…()

Y Check that a proposed object to
remove from a collection is valid.
[NOTE] ==== Directly mutable
collections are not currently
supported by the Wicket viewer.
==== See also validateAddTo…(),
and validate…() for properties
and actions.

2.1.1. addTo…()

The addTo…() supporting method is called whenever an object is added to a collection. Its purpose
is to allow additional business logic to be performed.


Directly mutable collections are not currently supported by the Wicket viewer.
The suggested workaround is to simply define an action.

For example:

public class LibraryMember {
    public SortedSet<Book> getBorrowed() { ... }
    public void setBorrowed(SortedSet<Book> borrowed) { ... }
    public void addToBorrowed(Book book) {
        getBorrowed().add(book);                                              ①
        reminderService.addReminder(this, book, clock.today().plusDays(21));  ②
    }
    public void removeFromBorrowed(Book book) { ... }
    ...
}

① update the collection

② perform some additional business logic

See also removeFrom…()`

2.1.2. autoComplete…()

The autoComplete…() supporting method is called for action parameters and for properties to find
objects from a drop-down list box.  The use case is when the number of candidate objects is
expected to be large, so the user is required to enter some characters to narrow the search down.


If the number of candidate objects is comparatively small, then use choices…()

supporting method instead.

The signature of the supporting method depends on whether it is for a parameter or a property.
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Parameters

For an action parameter in (0-based) position N, and of type T, the signature is:

public List<T> autoCompleteNXxx(String search) { ... }

It is also valid to return T[], a Set<T> or a Collection<T>.

For example:

public class ShoppingCartItem {
    @Property(editing=Editing.DISABLED)
    public Product getProduct() { ... }
    public void setProduct(Product product) { ... }

    @Property(editing=Editing.DISABLED)
    public int getQuantity() { ... }
    public void setQuantity(int quantity) { ... }

    @Action(semantics=SemanticsOf.IDEMPOTENT)
    public ShoppingCartItem updateProduct(
        Product product,
        @ParameterLayout(named="Quantity")
        final int quantity) {
        setProduct(product);
        setQuantity(quantity);
    }
    public Collection<Product> autoComplete0UpdateProduct(  ①
        @MinLength(3) String search                         ②
    ) {
        ...
    }
    ...
}

① product is the 0th argument of the action.

② the @MinLength annotation specifies the minimum number of characters that must be entered
before a search is performed for matching objects

Properties

For a property of type T, the signature is:

public List<T> autoCompleteXxx(String search) { ... }

(As for action parameters) it is also valid to return T[], a Set<T> or a Collection<T>.

For example:
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public class ShoppingCartItem {
    public Product getProduct() { ... }
    public void setProduct(Product product) { ... }

    public Collection<Product> autoCompleteProduct(
        @MinLength(3) String search                     ①
    ) {
        ...
    }
    ...
}

① the @MinLength annotation specifies the minimum number of characters that must be entered
before a search is performed for matching objects

2.1.3. choices…()

The choices…() supporting method is called for both action parameters and for properties, to find
objects from a drop-down list box.  Unlike autoComplete…(), the use case is when the number of
objects is comparatively small and can be selected from a drop-down without any additional
filtering.

The signature of the supporting method depends on whether it is for an action parameter or a
property.

Parameters

For an action parameter in (0-based) position N, and of type T, the signature is:

public Collection<T> choicesNXxx() { ... }

For example:
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public class ShoppingCartItem {
    @Property(editing=Editing.DISABLED)
    public Product getProduct() { ... }
    public void setProduct(Product product) { ... }

    @Property(editing=Editing.DISABLED)
    public int getQuantity() { ... }
    public void setQuantity(int quantity) { ... }

    @Action(semantics=SemanticsOf.IDEMPOTENT)
    public ShoppingCartItem updateProduct(
        Product product,
        @ParameterLayout(named="Quantity")
        final Integer quantity) {
        setProduct(product);
        setQuantity(quantity);
    }
    public Collection<Integer> choices1UpdateProduct() {
        return Arrays.asList(1,2,3,5,10,25,50,100);
    }
    ...
}

Dependent Choices

Action parameters also support the notion of dependent choices, whereby the list of choices is
dependent upon the value of some other argument.

An example can be found in the (non-ASF) Isis addons' todoapp, whereby `ToDoItem`s are
categorized and then can also be subcategorized:
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This functionality is actually implemented as a contributed action, so the code for this is:

@DomainService(nature = NatureOfService.VIEW_CONTRIBUTIONS_ONLY)
public class UpdateCategoryContributions ... {
    @ActionLayout(
            describedAs = "Update category and subcategory"
    )
    @Action(semantics = SemanticsOf.IDEMPOTENT)
    public Categorized updateCategory(
            final Categorized item,                              ①
            final Category category,
            @Parameter(optionality = Optionality.OPTIONAL)
            final Subcategory subcategory) {
        item.setCategory(category);
        item.setSubcategory(subcategory);
        return item;
    }
    public List<Subcategory> choices2UpdateCategory(             ②
            final Categorized item,                              ③
            final Category category) {                           ④
        return Subcategory.listFor(category);
    }
    ...
}

① ToDoItem implements Categorized
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② subcategory is the 2-th argument (0-based)

③ the item contributed to

④ the category selected

Dependent choices are not restricted to enums, however.  Going back to the shopping cart example
shown above, the choices for the quantity parameter could be dependent upon the selected Product:

public class ShoppingCartItem {
    ...
    @Action(semantics=SemanticsOf.IDEMPOTENT)
    public ShoppingCartItem updateProduct(
        Product product,
        @ParameterLayout(named="Quantity")
        final Integer quantity) {
        setProduct(product);
        setQuantity(quantity);
    }
    public Collection<Integer> choices1UpdateProduct(Product product) {
        return productService.quantityChoicesFor(product);                 ①
    }
    ...
}

① productService is a (fictitous) injected service that knows what the quantity choices should be
for any given product

Properties

For a property of type T, the signature is:

public Collection<T> choicesXxx() { ... }

For example:

public class ShoppingCartItem {
    public Product getProduct() { ... }
    public void setProduct(Product product) { ... }

    public Collection<Product> choicesProduct() {
        ...
    }

2.1.4. clear…()

The clear…() supporting method is called — instead of the setter — whenever an (optional)
property is to be set to null.  Its purpose is to allow additional business logic to be performed.
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For example:

public class LibraryMember {
    public Title getFavoriteTitle() { ... }
    public void setFavoriteTitle(Title title) { ... }
    public void modifyFavoriteTitle(Title title) { ... }
    public void clearFavoriteTitle() {
        if(getTitle() == null) { return; }
        setFavoriteTitle(null);                         ①
        titleFavoritesService.decrement(title);         ②
    }
    ...
}

① update the property

② perform some additional business logic

See also modify…()`

2.1.5. default…()

The default…() supporting method is called for action parameters to return the initial argument
value.  This may be some sensible default (eg today’s date, or 0 or 1), or — for an action that is
modifying the state of an object — might default to the current value of a corresponding property.

The method is also called for properties in the case when an object is newly instantiated using
DomainObjectContainer#newTransientInstance(…).  This is a much less common use case.  If a default
is not specified then properties are initialized to a default based on their type (eg 0 or false).

The signature of the supporting method depends on whether it is for an action parameter or a
property.

Parameters

For an action parameter in (0-based position n), and of type T, the signature is:

public T defaultNXxx() { ... }

For example:
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public class ShoppingCartItem {
    @Property(editing=Editing.DISABLED)
    public Product getProduct() { ... }
    public void setProduct(Product product) { ... }

    @Property(editing=Editing.DISABLED)
    public int getQuantity() { ... }
    public void setQuantity(int quantity) { ... }

    @Action(semantics=SemanticsOf.IDEMPOTENT)
    public ShoppingCartItem updateProduct(
        Product product,
        @ParameterLayout(named="Quantity")
        final Integer quantity) {
        setProduct(product);
        setQuantity(quantity);
    }
    public Product default0UpdateProduct() {    ①
        return getProduct();
    }
    public int default1UpdateProduct() {        ②
        return getQuantity();
    }
    ...
}

① default the 0-th parameter using the current value of the product property

② default the 1-th parameter using the current value of the quantity property

Defaults are also supported (of course) for contributed actions.  For example, here is a contributed
action for updating category/subcategory of the (non-ASF) Isis addons' todoapp:
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@DomainService(nature = NatureOfService.VIEW_CONTRIBUTIONS_ONLY)
public class UpdateCategoryContributions ... {
    @ActionLayout(
            describedAs = "Update category and subcategory"
    )
    @Action(semantics = SemanticsOf.IDEMPOTENT)
    public Categorized updateCategory(
            final Categorized item,                              ①
            final Category category,
            @Parameter(optionality = Optionality.OPTIONAL)
            final Subcategory subcategory) {
        item.setCategory(category);
        item.setSubcategory(subcategory);
        return item;
    }
    public Category default1UpdateCategory(                     ②
            final Categorized item) {
        return item != null? item.getCategory(): null;
    }
    public Subcategory default2UpdateCategory(                  ③
            final Categorized item) {
        return item != null? item.getSubcategory(): null;
    }
}

① ToDoItem implements Categorized

② defaults the 1-th parameter using the item’s category property

③ defaults the 2-th parameter using the item’s subcategory property

Properties

For a property of type T, the signature is:

public T defaultXxx() { ... }

For example:

public class ShoppingCartItem {
    public int getQuantity() { ... }
    public void setQuantity(int quantity) { ... }

    public int defaultProduct() {
        return 1;
    }

12



Alternatives

There are, in fact, two other ways to set properties of a newly instantiated object to default values.

The first is to use the created() callback, called by the framework when
DomainObjectContainer#newTransientInstance(…) is called.  This method is called after any
dependencies have been injected into the service.

The second is more straightforward: simply initialize properties in the constructor.  However, this
cannot use any injected services as they will not have been initialized.

2.1.6. disable…()

The disable…() supporting method is called for properties, collections and actions.  It allows the
modification of the property/collection to be vetoed (ie made read-only) and to prevent the
invocation of the action ("grey it out").


Directly mutable collections are not currently supported by the Wicket viewer;
they are always implicitly disabled.

Typically modification/invocation is vetoed based on the state of the domain object being interacted
with, though it could be any reason at all (eg the current date/time of the interaction, or the state of
some other related data such as stock levels, or the identity of the calling user).

The reason for vetoing a modification/invocation is normally returned as a string.  However,
Apache Isis' i18n support extends this so that reasons can be internationalized.

Actions

For an action the signature of the supporting method is:

public String disableXxx(...) { ... }

where the returned string is the reason the action invocation is vetoed (or null if not vetoed), and
the supporting method takes the same parameter types as the action itself.

For example:
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public class Customer {
    public boolean isBlacklisted() { ... }

    public Order placeOrder(
            final Product product,
            @ParameterLayout(named="Quantity")
            final int quantity) {
        ...
    }
    public String disablePlaceOrder(
            final Product product,
            final int quantity
            ) {
        return isBlacklisted()
                    ? "Blacklisted customers cannot place orders"
                    : null;
    }
    ...
}

Properties and Collections

For both properties and collections the signature of the supporting method is:

public String disableXxx() { ... }

where the returned string is the reason the modification is vetoed (or null if not vetoed).

For example:

public class Customer {
    public boolean isBlacklisted() { ... }

    public BigDecimal getCreditLimit() { ... }
    public void setCreditLimit(BigDecimal creditLimit) { ... }
    public String disableCreditLimit() {
        return isBlacklisted()
                    ? "Cannot change credit limit for blacklisted customers"
                    : null;
    }
    ...
}

2.1.7. get…()

The get…() prefix is simply the normal JavaBean getter prefix that denotes properties or
collections.

14



When Apache Isis builds its metamodel, it first searches for the getter methods, characterizing them
as either properties or collections based on the return type.  It then refines the metamodel based on
the presence of annotations and supporting methods.

All remaining public methods (that do not use one of the Apache Isis prefixes) are interpreted as
actions.

Any methods "left over" that do use one of the Apache Isis prefixes, are interpreted to be orphaned.
Apache Isis "fails-fast" and will not boot, instead printing an error message to the log so that the
issue can be easily diagnosed.

See also set…().

2.1.8. hide…()

The hide…() supporting method is called for properties, collections and actions.  It allows the
property/collection to be completely hidden from view.

It’s comparatively rare for properties or collections to be imperatively hidden from view, but
actions are sometimes hidden or shown visible (as opposed to being just disabled, ie greyed out).

Actions

For an action the signature of the supporting method is either:

public bool hideXxx(...) { ... }

where the supporting method takes the same parameter types as the action itself, or more simply:

public bool hideXxx() { ... }

with no parameters at all.  Returning true will hide the action, returning false leaves it visible.

For example:
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public class Customer {
    public boolean isBlacklisted() { ... }

    public Order placeOrder(
            final Product product,
            @ParameterLayout(named="Quantity")
            final int quantity) {
        ...
    }
    public boolean hidePlaceOrder() {
        return isBlacklisted();
    }
    ...
}

Properties and Collections

For both properties and collections the signature of the supporting method is:

public boolean hideXxx() { ... }

where returning true will hide the property/collection, returning false leaves it visible.

For example:

public class Customer {
    public boolean isBlacklisted() { ... }

    public BigDecimal getCreditLimit() { ... }
    public void setCreditLimit(BigDecimal creditLimit) { ... }
    public boolean hideCreditLimit() {
        return isBlacklisted();
    }
    ...
}

2.1.9. modify…()

The modify…() supporting method is called — instead of the setter — whenever a property has been
set to be set to a new value.  Its purpose is to allow additional business logic to be performed.

For example:
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public class LibraryMember {
    public Title getFavoriteTitle() { ... }
    public void setFavoriteTitle(Title title) { ... }
    public void modifyFavoriteTitle(Title title) {
        if(getTitle() != null) {
            titleFavoritesService.decrement(getTitle());    ①
        }
        setFavoriteTitle(title);                            ②
        titleFavoritesService.decrement(title);             ③
    }
    public void clearFavoriteTitle() { ... }
    ...
}

① perform some additional business logic

② update the property

③ perform some additional business logic

See also clear…()`

2.1.10. removeFrom…()

The removeFrom…() supporting method is called whenever an object is removed from a collection.
Its purpose is to allow additional business logic to be performed.


Directly mutable collections are not currently supported by the Wicket viewer.
The suggested workaround is to simply define an action.

For example:

public class LibraryMember {
    public SortedSet<Book> getBorrowed() { ... }
    public void setBorrowed(SortedSet<Book> borrowed) { ... }
    public void addToBorrowed(Book book) { ... }
    public void removeFromBorrowed(Book book) {
        getBorrowed().remove(book);                         ①
        reminderService.removeReminder(this, book);         ②
    }
    ...
}

① update the collection

② perform some additional business logic

See also addTo…()`
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2.1.11. set…()

The set…() prefix is simply the normal JavaBean setter prefix that denotes writeable properties or
collections.

See also get…().

2.1.12. validate…()

The validate…() supporting method is called for properties, actions and action parameters.  It
allows the proposed new value for a property to be rejected, or the proposed argument of an action
parameter to be rejected, or to reject a whole set of action arguments for an actio invocation.

The reason for vetoing a modification/invocation is normally returned as a string.  However,
Apache Isis' i18n support extends this so that reasons can be internationalized if required.

Action Parameter

For an action parameter in (0-based) position N, and of type T, the signature is:

public String validateNXxx(T proposed) { ... }

where the returned string is the reason why the argument is rejected (or null if not vetoed).

For example:

public class Customer {
    public Order placeOrder(
            final Product product,
            @ParameterLayout(named="Quantity")
            final int quantity) {
        ...
    }
    public String validate0PlaceOrder(
            final Product product) {
        return product.isDiscontinued()
                    ? "Product has been discontinued"
                    : null;
    }
    ...
}

Action Parameter Set

In addition to validating a single single action argument, it is also possible to validate a complete set
of action arguments.  The signature is:
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public String validateXxx(...) { ... }

where the returned string is the reason why the argument is rejected (or null if not vetoed), and the
supporting method takes the same parameter types as the action itself.

For example:

public class Customer {
    public Order placeOrder(
            final Product product,
            @ParameterLayout(named="Quantity")
            final int quantity) {
        ...
    }
    public String validatePlaceOrder(
            final Product product,
            final int quantity) {
        return quantity > product.getOrderLimit()
                    ? "May not order more than " + product.getOrderLimit() + " items
for this product"
                    : null;
    }
    ...
}

Properties

For properties of type T the signature of the supporting method is:

public String validateXxx(T proposed) { ... }

where the returned string is the reason the modification is vetoed (or null if not vetoed).

For example:

public class Customer {
    public BigDecimal getCreditLimit() { ... }
    public void setCreditLimit(BigDecimal creditLimit) { ... }
    public validateCreditLimit(BigDecimal creditLimit) {
        return creditLimit.compareTo(BigDecimal.ZERO) < 0
                    ? "Credit limit cannot be negative"
                    : null;
    }
    ...
}
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2.1.13. validateAddTo…()

The validateAddTo…() supporting method is called whenever an object is to be added to a
collection. Its purpose is to validate the proposed object and possibly veto the change.


Directly mutable collections are not currently supported by the Wicket viewer.
The suggested workaround is to simply define an action.

The signature of the supporting method for a collection with element type E is:

public String validateAddToXxx(E element) { ... }

where the returned string is the reason the collection modification invocation is vetoed (or null if
not vetoed).  Apache Isis' i18n support extends this so that reasons can be internationalized if
required.

For example:

public class LibraryMember {
    public SortedSet<Book> getBorrowed() { ... }
    public void setBorrowed(SortedSet<Book> borrowed) { ... }
    public String validateAddToBorrowed(Book book) {
        return book.isReference()? "Reference books cannot be borrowed": null;
    }
    public void validateRemoveFromBorrowed(Book book) { ... }
    ...
}

See also addTo…() and  validateRemoveFrom…()`

2.1.14. validateRemoveFrom…()

The validateRemoveFrom…() supporting method is called whenever an object is to be removed from
a collection. Its purpose is to validate the proposed object removal and possibly veto the change.


Directly mutable collections are not currently supported by the Wicket viewer.
The suggested workaround is to simply define an action.

The signature of the supporting method for a collection with element type E is:

public String validateRemoveFromXxx(E element) { ... }

where the returned string is the reason the collection modification invocation is vetoed (or null if
not vetoed).  Apache Isis' i18n support extends this so that reasons can be internationalized if
required.
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For example:

public class LibraryMember {
    public SortedSet<Book> getBorrowed() { ... }
    public void setBorrowed(SortedSet<Book> borrowed) { ... }
    public String validateAddToBorrowed(Book book) { ... }
    public void validateRemoveFromBorrowed(Book book) {
        return !book.hasBeenReadBy(this)? "You didn't read this book yet": null;
    }
    ...
}

See also removeFrom…() and  validateAddTo…()`

2.2. Reserved Methods
The table below lists the reserved methods that are recognized as part of Apache Isis' default
programming model.

Table 2. Reserved Methods

Method Description

cssClass() Provides a CSS class for this object instance.  In conjunction with
application.css, can therefore provide custom styling of an object instance
wherever it is rendered.
See also title() and iconName().

disable(…) Disable all or some of an object’s properties

getId() Provides an optional unique identifier of a service.
If not provided, the service’s fully-qualified class name is used.

hide(…) Hide all or some of an object’s properties

iconName() Provides the name of the image to render, usually alongside the title, to
represent the object. If not provided, then the class name is used to locate an
image.
See also title() and cssClass()

title() Provides a title for the object.
See also iconName() and cssClass()

validate() Validate the object’s state prior to persisting.

2.2.1. cssClass()

The cssClass() returns a CSS class for a particular object instance.

The Wicket viewer wraps the object’s representation in a containing <div> with the class added.
This is done both for rendering the object either in a table or when rendering the object on its own
page.
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In conjunction with application.css, can therefore provide custom styling of an object instance
wherever it is rendered.

For example, the (non-ASF) Isis addons' todoapp uses this technique to add a strikethrough for
completed todo items.  This is shown on the home page:

The code to accomplish this is straightforward:

public class ToDoItem ... {
    public String cssClass() {
        return !isComplete() ? "todo" : "done";
    }
    ...
}

In the application.css, the following styles were then added:

tr.todo {
}
tr.done {
    text-decoration: line-through;
    color: #d3d3d3;
}
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See also title() and iconName().

2.2.2. disable()

One use case that Apache Isis supports is that of a domain object with a lifecycle whereby at some
stage it should become immutable: all its properties/collections should be disabled, and/or its
actions become not invokable.

It would be painful to have to write a separate disable…() method for each and every member, so
instead Isis allows a single disable…(…) method to be implemented that is applied to all members.

The signature of the method is:

public String disable(Identifier.Type identifierType) { ... }

where Identifier.Type is part of the Isis applib (nested static class of o.a.i.applib.Identifier) to
distinguish between an interaction with an action, a property or an action.

Note that Apache Isis' i18n support extends this so that the returned reason can also be
internationalized.

For example:

public String disable(Identifier.Type identifierType) {
    return !calendarService.isOfficeHours(clock.today()
            ? "Cannot modify objects outside of office hours"
            : null;
}

See also the similar methods to hide() object members en-masse.

Alternatives

An alternative design — and one that could be easily argued is actually more flexible — is to
leverage domain events with vetoing subscribers.

With this approach we define, for a given domain class, a base PropertyDomainEvent,
CollectionDomainEvent and ActionDomainEvent.  A good pattern is to make these nested static classes.
For example:

public class ToDoItem ... {
    public static abstract class PropertyDomainEvent<T>
            extends ToDoAppDomainModule.PropertyDomainEvent<ToDoItem, T> {
        ...
    }
    ...
}
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where in turn:

public final class ToDoAppDomainModule {
    private ToDoAppDomainModule(){}
    public abstract static class PropertyDomainEvent<S,T>
            extends org.apache.isis.applib.services.eventbus.PropertyDomainEvent<S,T>
{
        ...
    }
    ...
}

Then, each property/collection/action emits either these base domain events or their own subclass:

public class ToDoItem ... {
    public static class DescriptionDomainEvent
            extends PropertyDomainEvent<String> {
        ...
    }
    @Property(
        domainEvent = DescriptionDomainEvent.class
    )
    public String getDescription() { ... }
    ...
}

A vetoing subscriber can then subscribe to the domain events and veto access, eg:

@DomainObject
public class VetoOutOfOfficeHours {
    @Subscribe
    public void on(ToDoItem.PropertyDomainEvent ev) {
        if(!calendarService.isOfficeHours(clock.today()) {
            ev.veto("Cannot modify objects outside of office hours");
        }
    }
    ...
}

Obviously there’s an awful lot more boilerplate here, but there’s also a lot more flexibility.

2.2.3. getId()

The getId() method applies only to domain services, and allows a unique identifer to be provided
for that service.

This identifier corresponds in many ways to the objectType() attribute for domain objects; it is used
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as an internal identifier but also appears in URLs within the RestfulObjects viewer's REST API.

If the identifier is omitted, the services fully qualified class name is used.


Unlike domain objects, where the use of an object type is strongly encouraged (eg
using @PersistenceCapable), it matters much less if an id is specified for domain
services.  The principle benefit is shorter URLs in the REST API.

2.2.4. hide()

One use case that Apache Isis supports is that of a domain object with a lifecycle whereby at some
stage some number of the object’s members should be hidden.  For example, for an object that at
some stage is logically immutable, we might want to make all its properties/collections
unmodifiable and hide all its actions.

While we could write a separate hide…() method for each and every action, this could become
painful.  So instead Isis allows a single hide…(…) method to be implemented that is applied to all
members.

The signature of the method is:

public boolean hide(Identifier.Type identifierType) { ... }

where Identifier.Type is part of the Isis applib (nested static class of o.a.i.applib.Identifier) to
distinguish between an interaction with an action, a property or an action.

For example:

public boolean hide(Identifier.Type identifierType) {
    return identifierType == Identifier.Type.ACTION && isFrozen();
}

See also the similar method to disable() object members en-masse.

Alternatives

An alternative design — and one that could be easily argued is actually more flexible — is to
leverage domain events with vetoing subscribers.

There is further discussion on this approach in here.

2.2.5. iconName()

Every object is represented by an icon; this is based on the domain object’s simple name.  The
Wicket viewer searches for the image in the same package as the .class file for the domain object.

The iconName() allows the icon that to be used to change for individual object instances.  These are
usually quite subtle, for example to reflect the particular status of an object.  The value returned by
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the iconName() method is added as a suffix to the base icon name.

For example, the (non-ASF) Isis addons' todoapp uses this technique to add an overlay for todo
items that have been completed:

The screenshot below shows the location of these png icon files:

The code to accomplish this is straightforward:

public class ToDoItem ... {
    public String iconName() {
        return !isComplete() ? "todo" : "done";
    }
    ...
}

See also title() and cssClass()

2.2.6. title()

Every object is represented by a title.  This appears both as a main header for the object when
viewed as well as being used as a hyperlink within properties and collections.   It therefore must
contain enough information for the end-user to distinguish the object from any others.

This is most commonly done by including some unique key within the title, for example a
customer’s SSN, or an order number, and so forth.  However note that Apache Isis itself does not
require the title to be unique; it is merely recommended in most cases.

An object’s title can be constructed in various ways, but the most flexible is to use the title()
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method.  The signature of this method is usually:

public String title() { ... }

Note that Apache Isis' i18n support extends this so that titles can also be internationalized.

For example, the (non-ASF) Isis addons' todoapp uses this technique to add an overlay for todo
items that have been completed:

public String title() {
    final TitleBuffer buf = new TitleBuffer();                              ①
    buf.append(getDescription());
    if (isComplete()) {                                                     ②
        buf.append("- Completed!");
    } else {
        try {
            final LocalDate dueBy = wrapperFactory.wrap(this).getDueBy();   ③
            if (dueBy != null) {
                buf.append(" due by", dueBy);
            }
        } catch(final HiddenException ignored) {                            ④
        }
    }
    return buf.toString();
}

① simple tility class to help construct the title string

② imperative conditional logic

③ using the WrapperFactory to determine if the dueBy field is visible for this user …

④ … but ignore if not

As the example above shows, the implementation can be as complex as you like.

In many cases, though, you may be able to use the @Title annotation.

See also iconName() and cssClass()

2.2.7. validate()

The validate() method is used to specify that invariants pertaining to an object’s state are enforced.


(As of 1.8.0) there are known limitations with this functionality.  Invariants are
enforced when an object is initially created and when it is edited, however
invariants are currently not enforced if an action is invoked.

The signature of the method is:
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public String validate() { ... }

where the returned string is the reason that the invocation is vetoed.

Note that Apache Isis' i18n support extends this so that the returned reason can also be
internationalized.

2.3. Lifecycle Methods
The lifecycle callback methods notify a domain entity about its interaction within the persistence
lifecycle.  For example, the entity is notified immediately prior to being persisted, or when it is
about to be updated.



Note that these callbacks are fired by Apache Isis rather than JDO.  In the future
we may deprecate them because there are better mechanisms available using
listeners/subscribers:

• in Isis 1.9.0 and earlier, you may therefore want to consider using the JDO API
directly to set up a lifecycle listener; see here for further discussion.

• alternatively, you can use a subscriber for the lifecycle events fired in Isis.

The lifecycle callback methods supported by Isis are:

Table 3. Lifecycle methods (partial support)

Method Description

created() called when an object has just been created using newTransientInstance()

loaded() called when a (persistent) object has just been loaded from the object store.

persisted() called when object has just been persisted from the object store.

persisting() called when a (not-yet-persistent) object is just about to be persisted from the
object store

removed() called when a (persistent) object has just been deleted from the object store

removing() called when a (persistent) object is just about to be deleted from the object
store

updated() called when a (persistent) object has just been updated in the object store

updating() called when a (persistent) object is just about to be updated in the object store

Some lifecycle methods have been deprecated:

Table 4. Deprecated lifecycle methods

Method Notes

deleted() Replaced by removed()
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Method Notes

deleting() Replaced by removing()

loading() callback for when the (persistent) object is just about to be loaded from the
object store.
[WARNING] ==== This method is never called. ====

saved() Replaced by persisted()

saving() Replaced by persisting()

2.3.1. created()

The created() lifecycle callback method is called when an object has just been created using
newTransientInstance()

 Alternatively, consider using a event bus subscriber on the ObjectCreatedEvent.

2.3.2. loaded()

The loaded() lifecycle callback method is called when a (persistent) object has just been loaded
from the object store.

 Alternatively, consider using a event bus subscriber on the ObjectLoadedEvent.

2.3.3. persisted()

The persisted() lifecycle callback method is called when object has just been persisted from the
object store.

See also persisting().

 Alternatively, consider using a event bus subscriber on the ObjectPersistedEvent.

2.3.4. persisting()

The persisting() lifecycle callback method is called when a (not-yet-persistent) object is just about
to be persisted from the object store

See also persisted().

 Alternatively, consider using a event bus subscriber on the ObjectPersistingEvent.

2.3.5. removed()

The removed() lifecycle callback method is called when a (persistent) object has just been deleted
from the object store

See also removing().
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 Alternatively, consider using a event bus subscriber on the ObjectRemovedEvent.

2.3.6. removing()

The removing() lifecycle callback method is called when a (persistent) object is just about to be
deleted from the object store

See also removed().

 Alternatively, consider using a event bus subscriber on the ObjectRemovingEvent.

2.3.7. updated()

The updated() lifecycle callback method is called when a (persistent) object has just been updated in
the object store

See also updating().

 Alternatively, consider using a event bus subscriber on the ObjectUpdatedEvent.

2.3.8. updating()

The updating() lifecycle callback method is called when a (persistent) object is just about to be
updated in the object store

See also updated().

 Alternatively, consider using a event bus subscriber on the ObjectUpdatingEvent.

2.3.9. Using the JDO API

As an alternative to relying on Apache Isis to call lifecycle callback methods, you could instead use
the JDO lifecycle listener API directly.


We may decide to deprecate the Apache Isis callbacks in the future because they
merely duplicate this functionality already available in JDO.

You can gain access to the relevant JDO API using the IsisJdoSupport domain service.

For example:
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@RequestScoped                                                   ①
@DomainService(nature=NatureOfService.DOMAIN)
public class ObjectChangedListenerService
        implements javax.jdo.listener.StoreLifecycleListener {   ②
    @Programmatic
    @PostConstruct
    public void init() {
        getPmFactory().addInstanceLifecycleListener(this);
    }
    @Programmatic
    @PreDestroy
    public void tidyUp() {
        getPmFactory().removeInstanceLifecycleListener(this);
    }
    private PersistenceManager getPersistenceManager() {
        return jdoSupport.getPersistenceManager();               ③
    }
    @Programmatic
    public void preStore (InstanceLifecycleEvent event) { ... }
    @Programmatic
    public void postStore (InstanceLifecycleEvent event) { ... }
    @Inject
    IsisJdoSupport jdoSupport;
}

① must be @RequestScoped because we register on the PersistenceManager, which is different for
each request.

② implement whichever callback lifecycle listeners are of interest

③ use the injected IsisJdoSupport service to obtain the PersistenceManager.

Note that it isn’t possible to register on the PersistenceManagerFactory because listeners cannot be
attached once a persistence session has been created (which it will have been when the service’s
@PostConstruct method is called).
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Chapter 3. Classes and Interfaces
This chapter describes the usage of various classes and interfaces that are not otherwise associated
with domain services, object layout or configuration.

3.1. AppManifest (bootstrapping)
This section describes how to implement the AppManifest interface to bootstrap both an Apache Isis
web application, and also its integration tests.

3.1.1. API

The AppManifest interface allows the constituent parts of an application to be defined
programmatically, most specifically the packages that contain domain services and/or persistent
entities.  Its API is defined as:

public interface AppManifest {
    public List<Class<?>> getModules();                         ①
    public List<Class<?>> getAdditionalServices();              ②
    public String getAuthenticationMechanism();                 ③
    public String getAuthorizationMechanism();                  ④
    public List<Class<? extends FixtureScript>> getFixtures();  ⑤
    public Map<String,String> getConfigurationProperties();     ⑥
}

① Must return a non-null list of classes, each of which representing the root of one of the modules
containing services and possibly entities, which together makes up the running application.

② If non-null, overrides the value of isis.services configuration property to specify a list of
additional classes to be instantiated as domain services (over and above the domain services
defined via getModules() method.

③ If non-null, overrides the value of isis.authentication configuration property to specify the
authentication mechanism.

④ If non-null, overrides the value of isis.authorization configuration property to specify the
authorization mechanism.

⑤ If non-null, overrides the value of isis.fixtures configuration property to specify a fixture
script to be installed.

⑥ Overrides for any other configuration properties.

The following sections describe each of these methods in a little more detail.

getModules()

The most significant method (the only one which must return a non-null value) is the getModules()
method.  Each module is identified by a class; the framework simply uses that class' package as the
root to search for domain services (annotated with @DomainService) and entities (annotated with
@PersistenceCapable).  Generally there is one such module class per Maven module.
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A module class for a domain module might for example be defined as:

package com.mycompany.myapp.dom;
public final class MyAppDomainModule {
    private MyAppDomainModule() {}
}

This tells the framework that the package and subpackages under com.mycompany.myapp.dom should
be searched for domain services (annotated with @DomainService), mixins (@Mixin) and entities
(@PersistenceCapabable).

As is perhaps apparent, the getModules() method replaces and overrides both the
isis.services.ServicesInstallerFromAnnotation.packagePrefix key (usually found in the
isis.properties  file) and also the`isis.persistor.datanucleus.RegisterEntities.packagePrefix` key
(usually found in the persistor_datanucleus.properties file).  The value of the isis.services-
installer configuration property is also ignored.

For example, the (non-ASF) Isis addons' todoapp defines the following:

@Override
public List<Class<?>> getModules() {
    return Arrays.asList(
            ToDoAppDomainModule.class,
            ToDoAppFixtureModule.class,
            ToDoAppAppModule.class,
            org.isisaddons.module.audit.AuditModule.class,
            org.isisaddons.module.command.CommandModule.class,
            org.isisaddons.module.devutils.DevUtilsModule.class,
            org.isisaddons.module.docx.DocxModule.class,
            org.isisaddons.module.publishing.PublishingModule.class,
            org.isisaddons.module.sessionlogger.SessionLoggerModule.class,
            org.isisaddons.module.settings.SettingsModule.class,
            org.isisaddons.wicket.gmap3.cpt.service.Gmap3ServiceModule.class
    );
}

As can be seen, the various (non-ASF) Isis Addons modules also each provide a module class that
can be easily referenced.

getAdditionalServices()

We normally we recommend that services are defined exclusively through getModules(), and that
this method should therefore return an empty list.  However, there are certain use cases where the
a service must be explicitly specified either because the service required does not (for whatever
reason) have a @DomainService annotation.

For example, the (non-ASF) Isis addons' security module (v1.9.0) allows the policy to evaluate
conflicting permissions to be specified by explicitly registering either the
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PermissionsEvaluationServiceAllowBeatsVeto domain service or the
PermissionsEvaluationServiceVetoBeatsAllow domain service:

@Override
public List<Class<?>> getAdditionalServices() {
    return Arrays.asList(
            org.isisaddons.module.security.dom.permission
.PermissionsEvaluationServiceVetoBeatsAllow.class
    );
}

If this method returns a non-null value, then it overrides the value of isis.services configuration
property.

getAuthenticationMechanism()

If non-null, this method specifies the authentication mechanism to use.  The valid values are
currently "shiro"  or "bypass".  If null is returned then the value of the isis.authentication
configuration property (in isis.properties file) is used instead.

See the security guide for further details on configuring shiro or bypass security.


This property is ignored for integration tests (which always uses the "bypass"
mechanism).

getAuthorizationMechanism()

If non-null, this method specifies the authorization mechanism to use.  The valid values are
currently "shiro"  or "bypass".  If null is returned then the value of the isis.authorization
configuration property (in isis.properties file) is used instead.

See the security guide for further details on configuring shiro or bypass security.


This property is ignored for integration tests (which always uses the "bypass"
mechanism).

getFixtures()

If non-null, this method specifies the fixture script(s) to be run on startup.  This is particularly
useful when developing or demoing while using an in-memory database.

For example:

@Override
public List<Class<? extends FixtureScript>> getFixtures() {
    return Lists.newArrayList(todoapp.fixture.demo.DemoFixture.class);
}
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Note that in order for fixtures to be installed it is also necessary to set the
isis.persistor.datanucleus.install-fixtures key to true.  This can most easily be done using the
getConfigurationProperties() method, discussed below.

getConfigurationProperties()

This method allow arbitrary other configuration properties to be overridden.  One common use
case is in conjunction with the getFixtures() method, discussed above:

@Override
public Map<String, String> getConfigurationProperties() {
    Map<String, String> props = Maps.newHashMap();
    props.put("isis.persistor.datanucleus.install-fixtures", "true");
    return props;
}

3.1.2. Bootstrapping

One of the primary goals of the AppManifest is to unify the bootstrapping of both integration tests
and the webapp.  This requires that the integration tests and webapp can both reference the
implementation.

We strongly recommend using a myapp-app Maven module to hold the implementation of the
AppManifest.  This Maven module can then also hold dependencies which are common to both
integration tests and the webapp, specifically the org.apache.isis.core:isis-core-runtime and the
org.apache.isis.core:isis-core-wrapper modules.

We also strongly recommend that any application-layer domain services and view models (code
that references persistent domain entities but that is not referenced back) is moved to this myapp-
app module.  This will allow the architectural layering of the overall application to be enforced by
Maven.

What then remains is to update the bootstrapping code itself.

Integration Tests

A AppManifest.Util helper class provides a number of static methods that can be used to set up
configuration properties appropriate for integration testing (eg run using an in-memory database).
This allows the responsibility of returning the configuration properties to belong exlusively to the
AppManifest.

There are three such static methods:
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public interface AppManifest {
  ...
  public static class Util {
    public static Map<String,String>
        withJavaxJdoRunInMemoryProperties(Map<String, String> map) { ... }   ①
    public static Map<String,String>
        withDataNucleusProperties(Map<String, String> map) { ... }           ②
    public static Map<String,String>
        withIsisIntegTestProperties(Map<String, String> map) { ... }         ③
  }
}

① sets up the javax.jdo.option.Connection* properties so as to run against an in-memory instance
of HSQLDB

② sets up DataNucleus to automatically create the databse schema, as well as a number of other
standard properties (disable persistence by reachability, support mixed case identifiers, disable
level 2 cache)

③ sets up standard properties for the Apache Isis framework, most specifically to enable fixtures
to be installed.

For example, the bootstrapping code for the SimpleApp archetype looks something like:

public class DomainAppSystemInitializer {
    public static void initIsft() {
        IsisSystemForTest isft = IsisSystemForTest.getElseNull();
        if(isft == null) {
            isft = new IsisSystemForTest.Builder()
                    .withLoggingAt(org.apache.log4j.Level.INFO)
                    .with(new DomainAppAppManifest() {
                        @Override
                        public Map<String, String> getConfigurationProperties() {
                            final Map<String, String> map = Maps.newHashMap();
                            Util.withJavaxJdoRunInMemoryProperties(map);
                            Util.withDataNucleusProperties(map);
                            Util.withIsisIntegTestProperties(map);
                            return map;
                        }
                    })
                    .build();
            isft.setUpSystem();
            IsisSystemForTest.set(isft);
        }
    }
}

Previously the IsisConfigurationJdoIntegTests (subclass of IsisConfiguration) was provided to set
up these configuration properties.  This class is still supported, but is deprecated.
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Webapps

To bootstrap an Apache Isis webapp (using the Wicket viewer), there are two choices:

• either specify the AppManifest by overriding the IsisWicketApplication#newWicketModule(), eg:

@Override
protected Module newIsisWicketModule() {
    final Module isisDefaults = super.newIsisWicketModule();
    ...
    final Module overrides = new AbstractModule() {
        @Override
        protected void configure() {
            ...
            bind(AppManifest.class).toInstance(new MyAppAppManifest());
        }
    };
    return Modules.override(isisDefaults).with(overrides);
}

• alternatively update isis.properties, using the isis.appManifest key to specify the AppManifest
implementation, eg:

isis.appManifest=domainapp.app.MyAppAppManifest

The first (programmatic) approach takes precedence over the second approach (configuration
properties).



If you use the org.apache.isis.WebServer class to launch your application from the
command line, then note that you can specify the AppManifest using the -m (or
--manifest) flag:

java org.apache.isis.WebServer -m
com.mycompany.myapp.MyAppAppManifestWithFixtures

3.1.3. Subsidiary Goals

There are a number of subsidiary goals of the AppManifest class (though as of v1.13.0 these have not
yet implemented):

• Allow different integration tests to run with different manifests.

• Normally the running application is shared (on a thread-local) between integration tests.
What the framework could perhaps do is to be intelligent enough to keep track of the
manifest in use for each integration test and tear down the shared state if the "next" test
uses a different manifest
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• Provide a programmatic way to contribute elements of web.xml.

• Provide a programmatic way to configure Shiro security.

• Anticipate the module changes forthcoming in Java 9.

• Eventually we see that the AppManifest class acting as an "aggregator", with the list of
modules will become Java 9 modules each advertising the types that they export.

• It might even be possible for AppManifests to be switched on and off dynamically (eg if Java9
is compatible with OSGi, being one of the design goals).

3.2. Superclasses
This section catalogues the various convenience (non event) superclasses defined by Apache Isis.
These are listed in the table below.

Table 5. Convenience Superclasses

API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
AbstractContainedObjec
t

o.a.i.core
isis-core-applib

(abstract
class)

o.a.i.applib.
AbstractDomainObject

o.a.i.core
isis-core-applib

(abstract
class)

o.a.i.applib.
AbstractFactoryAndRepo
sitory

o.a.i.core
isis-core-applib

(abstract
class)

o.a.i.applib.
AbstractService

o.a.i.core
isis-core-applib

(abstract
class)

o.a.i.applib.
AbstractSubscriber

o.a.i.core
isis-core-applib

(abstract
class)

o.a.i.applib.
AbstractViewModel

o.a.i.core
isis-core-applib

(abstract
class)

o.a.i.applib.
fixturescript
FixtureScript

o.a.i.core
isis-core-applib

(abstract
class)
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API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
fixturescripts
FixtureScripts

o.a.i.core
isis-core-applib

(abstract
class).
FixtureScr
iptsDefaul
t is a
default
implement
ation that
is used
when the
alternative
FixtureScr
iptsSpecif
icationPro
vider is
provided
(and no
other
implement
ation of
FixtureScr
ipts was
found).

depends
on:
ClassDisco
veryServic
e

3.2.1. AbstractContainedObject

This class is a convenience superclass for domain objects and services, providing general purpose
methods for interacting with the framework.  These include:

• allMatches(Query) - search for all objects matching the specified Query.

+ Note that this, and other similar methods (eg firstMatch(…), uniqueMatch(…)) will
automatically flush the current transactoin.

• newTransientInstance(Class) - to create a new instance of an object, with any services injected
into it

• persistIfNotAlready(Object) - to persist an object

In fact, the object is queued up to be persisted, and is only actually persisted either when the
transaction commits, or when the transaction is flushed (typically when a query is performed).

• warnUser(String) - generate a warning to the user

• getContainer() - which returns the DomainObjectContainer

Each of these methods simply delegates to an equivalent method in DomainObjectContainer.


In practice we find that there’s little to gain from subclassing; it’s easier/less
obscure to simply inject DomainObjectContainer into a simple pojo class.
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3.2.2. AbstractDomainObject

This class extends AbstractContainedObject, adding in convenience methods for managing the
persistence lifecycle of the object instance.

Each of these methods, eg isPersistent(…), delegates to an equivalent method in
DomainObjectContainer.

3.2.3. AbstractFactoryAndRepository

This class extends AbstractContainedObject.  Its intent was to be a convenience subclass for services
acting as either a repository or a factory, however note that  all of the methods that it defines are
now deprecated.

Instead, indicate that a service is repository using the @DomainService#repositoryFor() attribute.

3.2.4. AbstractService

This class extends AbstractContainedObject, adding in an implementation of getId() based upon the
classes name.

In practice there is little to gain from subclassing; simply inject DomainObjectContainer for broadly
equivalent functionality.

3.2.5. AbstractSubscriber

This is a convenience superclass for creating subscriber domain services on the EventBusService.  It
uses @PostConstruct and @PreDestroy callbacks to automatically register/unregister itself with the
EventBusService.

It’s important that subscribers register before any domain services that might emit events on the
EventBusService.  For example, the (non-ASF) Isis addons' security module provides a domain
service that automatically seeds certain domain entities; these will generate lifecycle events and so
any subscribers must be registered before such seed services.  The easiest way to do this is to use
the @DomainServiceLayout#menuOrder() attribute.

As a convenience, the AbstractSubscriber specifies this attribute.

3.2.6. AbstractViewModel

This class extends AbstractContainedObject, also implementing the ViewModel interface.  In and of
itself it provides no new behaviour.


As an alternative, consider simply annotating the view model class with {@link
org.apache.isis.applib.annotation.ViewModel}.

3.2.7. FixtureScript

The FixtureScript class is an abstract class defining an API to set up data within the object store,
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either for integration tests or while demoing/prototyping.

The primary method that subclasses must implement is:

protected abstract void execute(final ExecutionContext executionContext);

In this method the fixture script can in theory do anything, but in practice it is recommended that it
uses injected domain services to set up data.  The provided ExecutionContext is used to invoke child
fixture scripts, and alsocan be used to store references to any created objects (so that the calling test
can access these objects/so that they are rendered in the view model).

See the see the user guide’s testing chapter for further discussion on the use of fixture scripts, in
particular fixture scripts' API and usage.

3.2.8. FixtureScripts

This abstract class is intended to allow a domain service that can execute FixtureScripts to be easily
written.

However, it has now been deprecated; instead we recommend that the
FixtureScriptsSpecificationProvider service is implemented instead.  The framework will then
automatically use FixtureScriptsDefault as a fallback implementation of this class.

See the see the user guide’s testing chapter for further discussion on the use of fixture scripts, in
particular fixture scripts' API and usage.

3.3. Domain Event Classes
This section catalogues the various domain event classes defined by Apache Isis.

These events are broadcast on the EventBusService.  The domain events are broadcast as a result of
being specified in the @Action#domainEvent(),  @Property#domainEvent() or @Collection#domainEvent()
attributes.

They are listed in the table below.

Table 6. Domain Event Classes

API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
AbstractDomainEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class)

Superclass
of the
other
domain
events,
listed
below in
this table.
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API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
ActionDomainEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ActionDoma
inEvent.De
fault is the
concrete
implement
ation used
if no
@Action#do
mainEvent
attribute is
specified

Broadcast
whenever
there is an
interaction
(hide/disab
le/validate/
pre-
execute/po
st-execute)
with an
object’s
action.

o.a.i.applib.
CollectionDomainEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
Collection
DomainEven
t.Default
is the
concrete
implement
ation used
if no
@Collectio
n#domainEv
ent
attribute is
specified.

Broadcast
whenever
there is an
interaction
(hide/disab
le/validate/
access)
with an
object’s
collection.

o.a.i.applib.
PropertyDomainEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
PropertyDo
mainEvent.
Default is
the
concrete
implement
ation used
if no
@Propert#d
omainEvent
attribute is
specified

Broadcast
whenever
there is an
interaction
(hide/disab
le/validate/
access)
with an
object’s
property.

3.3.1. AbstractDomainEvent

This class is the superclass for all domain events that are raised by the framework when interacting
with actions, properties or collections.

Its immediate subclasses are:
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• ActionDomainEvent

• PropertyDomainEvent

• CollectionDomainEvent

The main purpose of the class is to define the protocol by which subscribers can influence an
interaction (eg hide a collection, disable a property, validate action arguments).  It class also
provides a simple mechanism to allow adhoc sharing of user data between different phases.

API

The API of the class is:

public abstract class AbstractDomainEvent<S> extends java.util.EventObject {

    public Phase getEventPhase();                                   ①
    public S getSource();                                           ②
    public Identifier getIdentifier();                              ③

    public void hide();                                             ④
    public boolean isHidden();                                      ⑤

    public void disable(final String reason);                       ⑥
    public void disable(final TranslatableString reason);
    public String getDisabledReason();                              ⑦
    public TranslatableString getDisabledReasonTranslatable();
    public boolean isDisabled();

    public void invalidate(final String reason);                    ⑧
    public void invalidate(final TranslatableString reason);
    public String getInvalidityReason();                            ⑨
    public TranslatableString getInvalidityReasonTranslatable();
    public boolean isInvalid();

    public void veto(final String reason, final Object... args);    ⑩
    public void veto(final TranslatableString translatableReason);

    public Object get(Object key);                                  ⑪
    public void put(Object key, Object value);
}

① Whether the framework is checking visibility, enablement, validity or actually executing
(invoking action, editing property), as per the Phase enum (defined below).

② The domain object raising this event

③ Identifier of the action, property or collection being interacted with.

④ API for subscribers to hide the member

⑤ Used by the framework to determine if the member should be hidden (not rendered)

⑥ API for subscribers to disable the member, specifying the reason why (possibly translated)
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⑦ Used by the framework to determine whether the member should be disabled (greyed out)
when rendered.

⑧ API for subscribers to invalidate an interaction, eg invalid arguments to an action

⑨ Used by the framework to determine whether the interaction is invalid and should be blocked
(eg pressing OK shows message)

⑩ Convenience API for subscribers to veto; will automatically call either hide(), disable(…) or
invalidate(…) based on the phase

⑪ Mechanism to allow subscribers to share arbitrary information between phases.  One event
instance is used for both the hide and disable phases, and a different event instance is shared
between validate/pre-execute/post-execute.

The referenced Phase enum is in turn:

public enum Phase {
    HIDE,
    DISABLE,
    VALIDATE,
    EXECUTING,
    EXECUTED;
    public boolean isValidatingOrLater();    ①
}

① The significance being that at this point the proposed values/arguments are known, and so the
event can be fully populated.

3.3.2. ActionDomainEvent

Subclass of AbstractDomainEvent for actions.

The class has a number of responsibilities (in addition to those it inherits):

• capture the target object being interacted with

• capture the arguments for each of the action’s parameters

• provide selected metadata about the action parameters from the metamodel (names, types)

• link back to the CommandContext service’s Command object

The class itself is instantiated automatically by the framework whenever interacting with a
rendered object’s action.

API

The API of the class is:
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public abstract class ActionDomainEvent<S> extends AbstractDomainEvent<S> {

    public static class Default extends ActionDomainEvent<Object> { ... }   ①
    public static class Noop extends ActionDomainEvent<Object> { ... }      ②
    public static class Doop extends ActionDomainEvent<Object> { ... }      ③

    @Deprecated
    public Command getCommand();                                            ④

    public SemanticsOf getSemantics();

    public List<String> getParameterNames();
    public List<Class<?>> getParameterTypes();

    public Object getMixedIn();                                             ⑤
    public List<Object> getArguments();                                     ⑥
    public Object getReturnValue();                                         ⑦
}

① The Default nested static class is the default for the @Action#domainEvent() annotation attribute.
Whether this raises an event or not depends upon the
isis.reflector.facet.actionAnnotation.domainEvent.postForDefault configuration property.

② The Noop class is provided as a convenience to indicate that an event should not be posted
(irrespective of the configuration property setting).

③ Similarly, the Doop class is provided as a convenience to indicate that an event should be raised
(irrespective of the configuration property setting).

④ Deprecated, use CommandContext or (better)  InteractionContextinstead.

⑤ Populated only for mixins; holds the underlying domain object that the mixin contributes to.

⑥ The arguments being used to invoke the action; populated during validate phase and
subsequent phases.

⑦ The value returned by the action; populated only in the executed phase.

3.3.3. CollectionDomainEvent

Subclass of AbstractDomainEvent for collections.

The class has a couple of responsibilities (in addition to those it inherits):

• capture the target object being interacted with

• indicate whether the interaction is to add or remove an object from the collection (or simply to
indicate that the collection is being accessed/read)

• capture the object reference being added or removed

The class itself is instantiated automatically by the framework whenever interacting with a
rendered object’s collection.
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API

The API of the class is:

public abstract class CollectionDomainEvent<S,T> extends AbstractDomainEvent<S> {

    public static class Default                                 ①
        extends CollectionDomainEvent<Object, Object> { ... }
    public static class Noop                                    ②
        extends CollectionDomainEvent<Object, Object> { ... }
    public static class Doop                                    ③
        extends CollectionDomainEvent<Object, Object> { ... }

    public T getValue();                                        ④
    public Of getOf();                                          ⑤
}

① The Default nested static class is the default for the @Collection#domainEvent() annotation
attribute.  Whether this raises an event or not depends upon the
isis.reflector.facet.collectionAnnotation.domainEvent.postForDefault configuration property.

② The Noop class is provided as a convenience to indicate that an event should not be posted
(irrespective of the configuration property setting).

③ Similarly, the Doop class is provided as a convenience to indicate that an event should be raised
(irrespective of the configuration property setting).

④ the object being added or removed

⑤ whether this is to add or to remove

where the Of enum indicates in turn how the collection is being interacted with:

public static enum Of {
    ACCESS,         ①
    ADD_TO,         ②
    REMOVE_FROM     ③
}

① collection is being rendered; set during for hide and disable phases

② collection is being added to; set for validate, executing and executed phases

③ or, collection is being removed from; set for validate, executing and executed phases

3.3.4. PropertyDomainEvent

Subclass of AbstractDomainEvent for properties.

The class has a couple of responsibilities (in addition to those it inherits):

• capture the target object being interacted with
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• capture the old and new values of the property

The class itself is instantiated automatically by the framework whenever interacting with a
rendered object’s property.

API

The API of the class is:

public abstract class PropertyDomainEvent<S,T> extends AbstractDomainEvent<S> {

    public static class Default                                 ①
        extends PropertyDomainEvent<Object, Object> { ... }
    public static class Noop                                    ②
        extends PropertyDomainEvent<Object, Object> { ... }
    public static class Doop                                    ③
        extends PropertyDomainEvent<Object, Object> { ... }

    public T getOldValue();                                     ④
    public T getNewValue();                                     ⑤
}

① The Default nested static class is the default for the @Property#domainEvent() annotation
attribute.  Whether this raises an event or not depends upon the
isis.reflector.facet.propertyAnnotation.domainEvent.postForDefault configuration property.

② The Noop class is provided as a convenience to indicate that an event should not be posted
(irrespective of the configuration property setting).

③ Similarly, the Doop class is provided as a convenience to indicate that an event should be raised
(irrespective of the configuration property setting).

④ The pre-modification value of the property; populated at validate and subsequent phases.

⑤ The proposed (post-modification) value of the property; populated at validate and subsequent
phases

3.4. UI Event Classes
This section catalogues the various UI event classes defined by Apache Isis.

These events are broadcast on the EventBusService.  The domain events are broadcast as a result of
being specified in the @DomainObjectLayout#titleUiEvent(),  @DomainObjectLayout#iconUiEvent() or
@DomainObjectLayout#cssClassUiEvent() attributes.

They are listed in the table below.

Table 7. UI Event Classes
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API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
TitleUiEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
TitleUiEve
nt.Default
is the
concrete
implement
ation used
if no
@DomainObj
ectLayout#
titleUiEve
nt attribute
is specified

Broadcast
whenever
there is a
requireme
nt to
obtain a
title for a
domain
object.
Note that if
the domain
object
defines its
own
title()
supporting
method, or
has @Title
annotation
(s) on its
properties,
then these
will take
precedenc
e.
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API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
IconUiEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
IconUiEven
t.Default
is the
concrete
implement
ation used
if no
@DomainObj
ectLayout#
iconUiEven
t attribute
is specified

Broadcast
whenever
there is a
requireme
nt to
obtain an
icon (or
rather, the
name of an
icon) for a
domain
object.
Note that if
the domain
object
defines its
own
iconName()
supporting
method, or
if it has the
@DomainObj
ectLayout#
cssClassFa
()
attribute,
then these
will take
precedenc
e.
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API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
CssClassUiEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
CssClassUi
Event.Defa
ult is the
concrete
implement
ation used
if no
@DomainObj
ectLayout#
cssClassUi
Event
attribute is
specified

Broadcast
whenever
there is a
requireme
nt to
obtain a
CSS class
hint for a
domain
object.
Note that if
the domain
object
defines its
own
cssClass()
supporting
method
then this
will take
precedenc
e.

3.4.1. TitleUiEvent

This event class represents a request to obtain the title of a domain object.  The class has a number
of responsibilities:

• capture the target object being interacted with

• capture the title, if any, as specified to one of the subscribers

The class itself is instantiated automatically by the framework whenever interacting with a
rendered object’s action.


If the domain object defines its own title() supporting method, or has @Title
annotation(s) on its properties, then these will take precedence.

3.4.2. IconUiEvent

This event class represents a request to obtain the icon (or rather, name of icon) of a domain object.
The class has a number of responsibilities:

• capture the target object being interacted with

• capture the icon (name), if any, as specified to one of the subscribers

The class itself is instantiated automatically by the framework whenever interacting with a
rendered object’s action.
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
If the domain object defines its own iconName() supporting method, or if it has the
@DomainObjectLayout#cssClassFa() attribute, then these will take precedence.

3.4.3. CssClassUiEvent

This event class represents a request to obtain the a CSS class hint of a domain object.  The class has
a number of responsibilities:

• capture the target object being interacted with

• capture the CSS class, if any, as specified to one of the subscribers

The class itself is instantiated automatically by the framework whenever interacting with a
rendered object’s action.


if the domain object defines its own cssClass() supporting method then this will
take precedence.

3.5. Lifecycle Events
This section catalogues the various lifecycle event classes defined by Apache Isis.  These events are
fired automatically when a domain object is loaded, created, updated and so forth.

The lifecycle event classes are listed in the table below:

Table 8. Lifecycle Event Classes

API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
AbstractLifecycleEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class)

Superclass
of the
other
lifecycle
events,
listed
below in
this table.

o.a.i.applib.
ObjectCreatedEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ObjectCrea
tedEvent.D
efault is
the
concrete
implement
ation that
is used.

Broadcast
when an
object is
first
instantiate
d using the
DomainObje
ctContaine
r's
#newTransi
entInstanc
e(…)
method.

51

rgant.pdf#_rgant-DomainObjectLayout
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_object-creation-api
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_object-creation-api
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_object-creation-api


API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
ObjectLoadedEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ObjectLoad
edEvent.De
fault is the
concrete
implement
ation that
is  used.

Broadcast
when an
object is
retrieved
from the
database.

o.a.i.applib.
ObjectPersistedEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ObjectPers
istedEvent
.Default is
the
concrete
implement
ation that
is used.

Broadcast
when an
object is
first saved
(inserted)
into the
database
using the
DomainObje
ctContaine
r's
#persist(
…)
method.

o.a.i.applib.
ObjectPersistingEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ObjectPers
istingEven
t.Default
is the
concrete
implement
ation that
is used.

Broadcast
when an
object is
about to be
saved
(inserted)
into the
database
using the
DomainObje
ctContaine
r's
#persist(
…)
method.
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API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
ObjectRemovingEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ObjectRemo
vingEvent.
Default is
the
concrete
implement
ation that
is used.

Broadcast
when an
object is
about to be
deleted
from the
database
using the
DomainObje
ctContaine
r's
#remove(…
) method.

o.a.i.applib.
ObjectUpdatedEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ObjectUpda
tedEvent.D
efault is
the
concrete
implement
ation that
is used.

Broadcast
when an
object has
just been
updated in
the
database.
This is
done
either
explicitly
when the
current
transaction
is flushed
using the
DomainObje
ctContaine
r's
#flush(…)
method,
else is
done
implicitly
when the
transaction
commits at
the end of
the user
request.
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API Maven Module
Impl’n (g: a:)

Implemen
tation

Notes

o.a.i.applib.
ObjectUpdatingEvent

o.a.i.core
services.eventbus
isis-core-applib

(abstract
class).
ObjectUpda
tingEvent.
Default is
the
concrete
implement
ation that
is used.

Broadcast
when an
object is
about to be
updated in
the
database.
This is
done
either
explicitly
when the
current
transaction
is flushed
using the
DomainObje
ctContaine
r's
#flush(…)
method,
else is
done
implicitly
when the
transaction
commits at
the end of
the user
request.

3.5.1. AbstractLifecycleEvent

This class is the superclass for all lifecycle events that are raised by the framework when loading,
saving, updating or deleting objects from the database.

Its immediate subclasses are:

• ObjectCreatedEvent

• ObjectLoadedEvent

• ObjectPersistedEvent

• ObjectPersistingEvent

• ObjectRemovingEvent

• ObjectUpdatedEvent

• ObjectUpdatingEvent
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3.5.2. ObjectCreatedEvent

Subclass of AbstractLifecycleEvent, broadcast when an object is first instantiated using the
DomainObjectContainer's #newTransientInstance(…) method.

ObjectCreatedEvent.Default is the concrete implementation that is used.


In the future this may be generalized to allow arbitrary subclasses to be
broadcast, see ISIS-803.

3.5.3. ObjectLoadedEvent

Subclass of AbstractLifecycleEvent, broadcast when an object is retrieved from the database.

ObjectLoadedEvent.Default is the concrete implementation that is used.


In the future this may be generalized to allow arbitrary subclasses to be
broadcast, see ISIS-803.

3.5.4. ObjectPersistedEvent

Subclass of AbstractLifecycleEvent, broadcast when an object is first saved (inserted) into the
database using the DomainObjectContainer's #persist(…) method.

ObjectPersistedEvent.Default is the concrete implementation that is used.


In the future this may be generalized to allow arbitrary subclasses to be
broadcast, see ISIS-803.

3.5.5. ObjectPersistingEvent

Subclass of AbstractLifecycleEvent, broadcast when an object is about to be saved (inserted) into
the database using the DomainObjectContainer's #persist(…) method.

ObjectPersistingEvent.Default is the concrete implementation that is used.


In the future this may be generalized to allow arbitrary subclasses to be
broadcast, see ISIS-803.

3.5.6. ObjectRemovingEvent

Subclass of AbstractLifecycleEvent, broadcast when an object is about to be deleted from the
database using the DomainObjectContainer's #remove(…) method.

ObjectRemovingEvent.Default is the concrete implementation that is used.


In the future this may be generalized to allow arbitrary subclasses to be
broadcast, see ISIS-803.
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3.5.7. ObjectUpdatedEvent

Subclass of AbstractLifecycleEvent, broadcast when an object has just been updated in the
database.  This is done either explicitly when the current transaction is flushed using the
DomainObjectContainer's #flush(…) method, else is done implicitly when the transaction commits at
the end of the user request.

ObjectUpdatedEvent.Default is the concrete implementation that is used.


In the future this may be generalized to allow arbitrary subclasses to be
broadcast, see ISIS-803.

3.5.8. ObjectUpdatingEvent

Subclass of AbstractLifecycleEvent, broadcast when an object is about to be updated in the
database.  This is done either explicitly when the current transaction is flushed using the
DomainObjectContainer's #flush(…) method, else is done implicitly when the transaction commits at
the end of the user request.

ObjectUpdatingEvent.Default is the concrete implementation that is used.


In the future this may be generalized to allow arbitrary subclasses to be
broadcast, see ISIS-803.

3.6. Value Types

 TODO

Table 9. JDK Classes

Type Description

java.lang.Boolean

java.lang.Character

java.lang.Double

java.lang.Float

java.lang.Integer

java.lang.Long

java.lang.Short

java.lang.String

java.math.BigDecimal

java.math.BigInteger

java.sql.Date

java.sql.Time

java.sql.Timestamp
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Type Description

java.util.Date

Table 10. JodaTime classes

Type Description

org.joda.time.DateTime

org.joda.time.LocalDateTime

org.joda.time.LocalDate

Table 11. Isis Applib classes

Type Description

o.a.i.applib.value.
Blob

o.a.i.applib.value.
Clob

o.a.i.applib.value.
Color

o.a.i.applib.value.
Money

o.a.i.applib.value.
Password

3.6.1. Blob

Blob (in the org.apache.isis.applib.value package) is a value type defined by the Apache Isis
framework to represent a binary large object.  Conceptually you can consider it as a set of bytes (a
picture, a video etc), though in fact it wraps three pieces of information:

• the set of bytes

• a name

• a mime type.

This is reflected in the class' constructors and properties:
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public final class Blob ... {
    ...
    public Blob(String name, String primaryType, String subtype, byte[] bytes) { ... }
    public Blob(String name, String mimeTypeBase, byte[] bytes) { ... }
    public Blob(String name, MimeType mimeType, byte[] bytes) { ... }
    ...
    public String getName() { ... }
    public MimeType getMimeType() { ... }
    public byte[] getBytes() { ... }
    ...
}

Properties of this type can be mapped to JDO/DataNucleus using:

@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
        @javax.jdo.annotations.Column(name = "someImage_name"),
        @javax.jdo.annotations.Column(name = "someImage_mimetype"),
        @javax.jdo.annotations.Column(name = "someImage_bytes", jdbcType = "BLOB",
sqlType = "LONGVARBINARY")
})
private Blob someImage;

 For character large objects, use Clob value type.

3.6.2. Clob

Clob (in the org.apache.isis.applib.value package) is a value type defined by the Apache Isis
framework to represent a character large object.  Conceptually you can consider it as a set of
characters (an RTF or XML document, for example), though in fact it wraps three pieces of
information:

• the set of characters

• a name

• a mime type.

This is reflected in the class' constructors and properties:
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public final class Clob ... {
    ...
    public Clob(String name, String primaryType, String subType, char[] chars) { ... }
    public Clob(String name, String mimeTypeBase, char[] chars) { ... }
    public Clob(String name, MimeType mimeType, char[] chars) { ... }
    public Clob(String name, String primaryType, String subType, CharSequence chars) {
... }
    public Clob(String name, String mimeTypeBase, CharSequence chars) { ... }
    public Clob(String name, MimeType mimeType, CharSequence chars) { ... }
    ...
    public String getName() { ... }
    public MimeType getMimeType() { ... }
    public CharSequence getChars() { ... }
    ...
}

Properties of this type can be mapped to JDO/DataNucleus using:

@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
        @javax.jdo.annotations.Column(name = "someClob_name"),
        @javax.jdo.annotations.Column(name = "someClob_mimetype"),
        @javax.jdo.annotations.Column(name = "someClob_chars", jdbcType = "CLOB",
sqlType = "LONGVARCHAR")
})
private Clob someClob;

 For binary large objects, use Blob value type.

3.6.3. Color

 TODO - the org.apache.isis.applib.value.Color class.

3.6.4. Money

 TODO - the org.apache.isis.applib.value.Money class.

3.6.5. Password

 TODO

3.7. Applib Utility Classes
The org.apache.isis.applib.util package has a number of simple utility classes designed to
simplify the coding of some common tasks.
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3.7.1. Enums

 TODO

public final class Enums {
    public static String getFriendlyNameOf(Enum<?> anEnum) { ... }
    public static String getFriendlyNameOf(String anEnumName) { ... }
    public static String getEnumNameFromFriendly(String anEnumFriendlyName) { ... }
    public static String enumToHttpHeader(final Enum<?> anEnum) { ... }
    public static String enumNameToHttpHeader(final String name) { ... }
    public static String enumToCamelCase(final Enum<?> anEnum) { ... }
}

3.7.2. ObjectContracts

The ObjectContracts test provides a series of methods to make it easy for your domain objects to:

• implement Comparable (eg so can be stored in java.util.SortedSets)

• implement toString()

• implement equals()

• implement hashCode()

For example:

public class ToDoItem implements Comparable<ToDoItem> {

    public boolean isComplete() { ... }
    public LocalDate getDueBy() { ... }
    public String getDescription() { ... }
    public String getOwnedBy() { ... }

    public int compareTo(final ToDoItem other) {
        return ObjectContracts.compare(this, other, "complete","dueBy","description");
    }

    public String toString() {
        return ObjectContracts.toString(this, "description","complete","dueBy"
,"ownedBy");
    }
}
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

Note that ObjectContracts makes heavy use of Java Reflection.  While it’s great to
get going quickly in prototyping, we recommend you use your IDE to code
generate implementations of these methods for production code.

Moreover (and perhaps even more importantly) ObjectContracts implementation
can cause DataNucleus to recursively rehydrate a larger number of associated
entities (More detail below).

We therefore recommend that you disable persistence-by-reachability by adding:

persistor_datanucleus.properties

isis.persistor.datanucleus.impl.datanucleus.persistenceByReachabilityA
tCommit=false

The issue in more detail

Consider the entities:

In the course of a transaction, the Agreement entity is loaded into memory (not necessarily
modified), and then new AgreementRoles are associated to it.

All these entities implement Comparable using ObjectContracts, so that the implementation of
AgreementRole's (simplified) is:

public class AgreementRole {
    ...
    public int compareTo(AgreementRole other) {
        return ObjectContracts.compareTo(this, other, "agreement","startDate",
"party");
    }
    ...
}

while Agreement's is implemented as:

    public class Agreement {
        ...
        public int compareTo(Agreement other) {
            return ObjectContracts.compareTo(this, other, "reference");
        }
        ...
    }
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and Party's is similarly implemented as:

public class Party {
    ...
    public int compareTo(Party other) {
        return ObjectContracts.compareTo(this, other, "reference");
    }
    ...
}

DataNucleus’s persistence-by-reachability algorithm adds the AgreementRoles into a SortedSet,
which causes AgreementRole#compareTo() to fire:

• the evaluation of the "agreement" property delegates back to the Agreement, whose own
Agreement#compareTo() uses the scalar reference property.  As the Agreement is already in-
memory, this does not trigger any further database queries

• the evaluation of the "startDate" property is just a scalar property of the AgreementRole, so will
already in-memory

• the evaluation of the "party" property delegates back to the Party, whose own Party#compareTo()
requires the uses the scalar reference property.  However, since the Party is not yet in-memory,
using the reference property triggers a database query to "rehydrate" the Party instance.

In other words, figuring out whether AgreementRole is comparable requires the persistence-by-
reachability algorithm to run, causing the adjacent associated entity Party to also be retrieved.

3.7.3. Reasons

There are two different classes provided to help build reasons returned by disableXxX() and
validateXxx() methods:

• the org.apache.isis.applib.util.ReasonBuffer helper class

• the org.apache.isis.applib.util.Reasons helper class

For example:

public class Customer {
    ...
    public String validatePlaceOrder(Product p, int quantity) {
        return Reasons.coalesce(
            whetherCustomerBlacklisted(this),
            whetherProductOutOfStock(p)
        );
    }
}

Which you use (if any) is up to you.
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3.7.4. TitleBuffer

The TitleBuffer utility class is intended to make it easy to construct title strings (returned from the
title() method).

For example, it has overloaded versions of methods called append() and concat().

3.8. Specification pattern
The interfaces and classes listed in this chapter provide support for the  Specification pattern, as
described in Eric Evans' book Domain Driven Design, p224.

Apache Isis will automatically apply such specifications as validation rules on properties (as per
@Property#mustSatisfy()) and on action parameters (as per @Parameter#mustSatisfy()).

3.8.1. Specification

The heart of the support for this pattern is the Specification interface:

public interface Specification {
    public String satisfies(Object obj);  ①
}

① if returns null, then the constraint is satisfies; otherwise returns the reason why the constraint
has not been satisfied.

For example:

public class StartWithCapitalLetterSpecification implements Specification {
    public String satisfies(Object proposedObj) {
        String proposed = (String)proposedObj;               ①
        return "".equals(proposed)
            ? "Empty string"
            : !Character.isUpperCase(proposed.charAt(0))
                ? "Does not start with a capital letter"
                : null;
    }
}
public class Customer {
    @Property(mustSatisfy=StartWithCapitalLetterSpecification.class)
    public String getFirstName() { ... }
    ...
}

① this ugly cast can be avoided using some of the other classes available; see below.
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3.8.2. Specification2

The Specification2 interface extends the Specification API to add support for i18n.  This is done by
defining an additional method that returns a translatable string:

public interface Specification2 extends Specification {
    public TranslatableString satisfiesTranslatable(Object obj);  ①
}

① if returns null, then the constraint is satisfies; otherwise returns the reason why the constraint
has not been satisfied.

Note that if implementing Specification2 then there is no need to also provide an implementation
of the inherited satisfies(Object) method; this will never be called by the framework for
Specification2 instances.

3.8.3. Adapter classes

The AbstractSpecification and AbstractSpecification2 adapter classes provide a partial
implementation of the respective interfaces, providing type-safety.  (Their design is modelled on the
TypesafeMatcher class within Hamcrest).

For example:

public class StartWithCapitalLetterSpecification extends AbstractSpecification<String>
{
    public String satisfiesSafely(String proposed) {
        return "".equals(proposed)
            ? "Empty string"
            : !Character.isUpperCase(proposed.charAt(0))
                ? "Does not start with a capital letter"
                : null;
    }
}
public class Customer {
    @Property(mustSatisfy=StartWithCapitalLetterSpecification.class)
    public String getFirstName() { ... }
    ...
}

The AbstractSpecification2 class is almost identical; its type-safe method is
satisfiesTranslatableSafely(T) instead.

3.8.4. Combining specifications

There are also adapter classes that can be inherited from to combine specifications:

• SpecificationAnd - all provided specifications' constraints must be met
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• SpecificationOr - at least one provided specifications' constraints must be met

• SpecificationNot - its constraints are met if-and-only-if the provided specification’s constraint
was not met.

Note that these adapter classes inherit Specification but do not inherit Specification2; in other
words they do not support i18n.

3.9. i18n support
The org.apache.isis.applib.services.i18n package contains a single class to support i18n.

3.9.1. TranslatableString

 TODO - see user guide, i18n.

The TranslatableString utility class …

3.10. Contributee
The interfaces listed in this chapter act as contributees; they allow domain services to contribute
actions/properties/collections to any domain objects that implement these interfaces.

3.10.1. HasTransactionId

The HasTransactionId interface is a mix-in for any domain objects that reference a transaction id,
such as auditing entries or commands, or for Interactions persisted as published events.


Prior to 1.13.0, this identifier was the GUID of the Isis transaction in which the
object was created (hence the name).  As of 1.13.0, this identifier actually is for
the request/interaction in which the object was created, so is actually now mis-
named.

The interface is defined is:

public interface HasTransactionId {
    public UUID getTransactionId();                             ①
    public void setTransactionId(final UUID transactionId);
}

① unique identifier (a GUID) of this request/interaction.

Modules that either have domain entity that implement and/or services that contribute this
interface are:

• (non-ASF) Isis addons' audit module (AuditEntry entity, AuditingServiceContributions service)

• (non-ASF) Isis addons' command module (CommandJdo entity, CommandServiceJdoContributions
service)
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• (non-ASF) Isis addons' publishing module (PublishedEvent entity,
PublishingServiceContributions)

• (non-ASF) Isis addons' publishmq module (PublishedEvent entity)

3.10.2. HasUsername

The HasUsername interface is a mix-in for domain objects to be associated with a username.  Other
services and modules can then contribute actions/collections to render such additional information
relating to the activities of the user.

The interface is defined is:

public interface HasUsername {
    public String getUsername();
}

Modules that either have domain entity that implement and/or services that contribute this
interface are:

• (non-ASF) Isis addons' security module ( ApplicationUser entity, HasUsernameContributions

service)

• (non-ASF) Isis addons' audit module (AuditEntry entity,

• (non-ASF) Isis addons' command module’s CommandJdo entity, HasUsernameContributions service)

• (non-ASF) Isis addons' publishing module (PublishedEvent entity)

• (non-ASF) Isis addons' sessionlogger module (SessionLogEntry entity, HasUsernameContributions
service)

• (non-ASF) Isis addons' settings module (UserSettingJdo entity)

3.11. Roles
The interfaces listed in this chapter are role interfaces; they define a contract for the framework  to
interact with those domain objects that implement these interfaces.

3.11.1. HoldsUpdatedAt

The HoldsUpdatedAt role interface allows the (framework-provided) TimestampService to update each
object with the current timestamp whenever it is modified in a transaction.

The interface is defined as:

public interface HoldsUpdatedAt {
    void setUpdatedAt(java.sql.Timestamp updatedAt);
}

The current time is obtained from the ClockService.
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Entities that implement this interface often also implement HoldsUpdatedBy role interface; as a
convenience the Timestampable interface combines the two roles.

Alternative approaches

An alternative way to maintain a timestamp is to use JDO’s @Version annotation.  With this
approach, it is the JDO/DataNucleus that maintains the version, rather than the framework’s
TimestampService.

For example:

@javax.jdo.annotations.Version(
        strategy=VersionStrategy.DATE_TIME,
        column="version")
public class Customer {
    ...
    public java.sql.Timestamp getVersionSequence() {
        return (java.sql.Timestamp) JDOHelper.getVersion(this);
    }
}

3.11.2. HoldsUpdatedBy

The HoldsUpdatedBy role interface …

public interface HoldsUpdatedBy {
    void setUpdatedBy(String updatedBy);
}

Entities that implement this interface often also implement HoldsUpdatedAt role interface; as a
convenience the Timestampable interface combines the two roles.

3.11.3. Timestampable

The Timestampable role interface is a convenience that combines the HoldsUpdatedAt and
HoldsUpdatedBy interfaces.  It is defined as:

public interface Timestampable
    extends HoldsUpdatedAt, HoldsUpdatedBy {
}

The interface no additional methods of its own.

Alternatives

An alternative way to maintain a timestamp is to use JDO’s @Version annotation.  With this
approach, it is the JDO/DataNucleus that maintains the version, rather than the framework’s
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TimestampService.  See HoldsUpdatedBy for further details.

3.12. Mixins
The interfaces listed in this chapter are role interfaces; they define a contract for the framework  to
interact with those domain objects that implement these interfaces.

3.12.1. Object

The framework provides a single mixin that contributes to simply java.lang.Object.  It provides the
ability to download the layout XML for any domain object (in practical terms: entities and view
models).

clearHints()

When a domain object is rendered the end-user can select different tabs, and for collections can
sort the columns, navigate to second pages, or select different views of collections.  If the user
revisits that object, the Wicket viewer will remember these hints and render the domain object in
the same state.  These rendering hints are also included if the user copies the URL using the anchor
link (to right hand of the object’s title).

The Object_clearHints mixin provides the ability for the end-user to discard these hints so that the
object is rendered in its initial state:

public void clearHints() {
    ...
}

Appearance in the UI

This mixin actions are all associated with the "Metadata" fieldset.  If there is no such field set, then
the action  will be rendered as a top-level action).

Related Services

This mixin uses the HintStore service to store and retrieve UI hints for each rendered object, per
user.

downloadLayoutXml()

The Object_downloadLayoutXml mixin provides an action to download the layout XML for the current
domain object.  It has the following signature:
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public Object downloadLayoutXml(
    @ParameterLayout(named = "File name")
    final String fileName,
    final LayoutService.Style style) {          ①
    ...
}

① either current, complete, normalized or minimal.

See the documentation on layout XML and also the LayoutService for more information on these
styles

Appearance in the UI

This mixin actions are all associated with the "Metadata" fieldset.

A number of other mixins also contribute properties and actions to the "Metadata" fieldset.

Related Services

This mixin calls LayoutService to obtain the layout XML.

rebuildMetamodel()

The Object_rebuildMetamodel mixin provides the ability to discard the current internal metamodel
data (an instance of ObjectSpecification) for the domain class of the rendered object, and recreate
from code and other sources (most notably, layout XML data).  It has the following signature:

public void rebuildMetamodel() {
    ...
}

Appearance in the UI

This mixin actions are all associated with the "Metadata" fieldset.

A number of other mixins also contribute properties and actions to the "Metadata" fieldset.

Related Services

This mixin calls MetaModelService and the GridService to invalidate their caches.

3.12.2. Dto

The Dto role interface is intended to be implemented by JAXB-annotated view models, that is,
annotated using @XmlRootElement.  It enables the ability to download the XML and XSD schema of
those objects using two mixins, Dto_downloadXml and Dto_downloadXsd.

The interface is just a marker interface (with no members), and is defined as:
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public interface Dto { }

The Dto_downloadXml mixin defines the following action:

@Mixin
public class Dto_downloadXml {
    public Dto_downloadXml(final Dto dto) { ... }     ①
    public Object downloadXml(final String fileName) { ... }   ②
    ...
}

① provided as an action to any class that (trivially) implements the Dto interface

② actually this method is called '$$' in the code, a "special case" that means to use the derive the
action name from the class name.

This will return the XML text wrapped up in a Clob.

The Dto_downloadXsd mixin is similar:

@Mixin
public class Dto_downloadXsd {
    public Dto_downloadXsd(final Dto dto) { ... }
①
    public Object downloadXsd(final String fileName, final IsisSchemes isisSchemas) {
... }   ②
}

① provided as an action to any class that (trivially) implements the Dto interface

② actually this is '$$' in the code, a "special case" that means to use the derive the action name
from the class name.

If the domain object’s JAXB annotations reference only a single XSD schema then this will return
that XML text as a Clob of that XSD.  If there are multiple XSD schemas referenced then the action
will return a zip of those schemas, wrapped up in a Blob.  The IsisSchemas parameter to the action
can be used to optionally ignore the common Apache Isis schemas (useful if there is only one other
XSD schema referenced by the DTO).

Related Services

The Dto_downloadXml and Dto_downloadXsd delegate to the JaxbService to actually generate the
XML/XSD.

3.12.3. Persistable

All domain entities automatically implement the DataNucleus Persistable role interface as a result
of the enhancer process (the fully qualified class name is org.datanucleus.enhancement.Persistable).
So as a developer you do not need to write any code to obtain the mixins that contribute to this
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interface.

downloadJdoMetadata()

The Persistable_downloadJdoMetadata mixin provides an action which allows the JDO class metadata
to be downloaded as XML.  It has the following signature:

public Clob downloadJdoMetadata(                    ①
    @ParameterLayout(named = ".jdo file name")
    final String fileName) {
    ...
}

① returns the XML text wrapped up in a Clob.

Appearance in the UI

This mixin action is associated with the "Metadata" fieldset, and will appear as a panel drop-down
action.

These mixin properties are all associated with the "Metadata" fieldset.  The Object mixin also
contribute an action to the "Metadata" fieldset.

Related Services

The mixin delegates to the IsisJdoSupport service to obtain a reference to the JDO
PersistenceManagerFactory.

datanucleusXxx

The framework provides a number of mixins that expose the datanucleus Id and version of a
persistable domain entity.  Several implementations are provided to support different datatypes:

• Persistable_datanucleusIdLong will expose the entity’s id, assuming that the id is or can be cast
to java.lang.Long.  Otherwise the property will be hidden.

• Persistable_datanucleusVersionTimestamp will expose the entity’s version, assuming that the
version is or can be cast to java.sql.Timestamp.  Otherwise the property will be hidden.

• Persistable_datanucleusVersionLong will expose the entity’s version, assuming that the version
is or can be cast to java.lang.Long.  Otherwise the property will be hidden.

Appearance in the UI

These mixin properties are all associated with the "Metadata" fieldset.  The Object mixin also
contribute an action to the "Metadata" fieldset.

3.13. Layout
The org.apache.isis.applib.layout package defines a number of classes that allow the layout of
domain objects (entities and view models) to be customized.  These classes fall into two main
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categories:

• grid classes, that define a grid structure of rows, columns, tab groups and tabs, and;

• common component classes, that capture the layout metadata for an object’s properties,
collections and actions.  These are bound (or associated) to the regions of the grid

The framework provides an implementation of the grid classes modelled closely on Bootstrap 3,
along with Wicket viewer components capable of rendering that grid system.  In principle it is also
possible to extend the layout architecture for other grid systems.  The component classes, though,
are intended to be reusable across all grid systems.

The component classes, meanwhile, are broadly equivalent to the "layout" annotations
(@PropertyLayout, @CollectionLayout, @ActionLayout and @DomainObjectLayout

All of the classes in this package are JAXB-annotated, meaning that they can be serialized to/from
XML (the component classes in the http://isis.apache.org/applib/layout/component XSD namespace,
the bootstrap 3 grid classes in the http://isis.apache.org/applib/layout/grid/bootstrap3 XSD
namespace).  This ability to serialize to/from XML is used by the GridLoaderService, the default
implementation of which reads the grid layout for a domain class from a .layout.xml file on the
classpath.

3.13.1. Component

The component classes reside in the org.apache.isis.applib.layout.component package, and consist
of:

• FieldSet

A fieldset (previously also called a property group or member group) of a number of the
domain object’s properties (along with any associationed actions of those properties).

• layout data classes, which correspond to the similarly named annotations:

• PropertyLayoutData, corresponding to the @PropertyLayout annotation;

• CollectionLayoutData, corresponding to the @CollectionLayout annotation;

• ActionLayoutData, corresponding to the @ActionLayout annotation;

• DomainObjectLayoutData, corresponding to the @DomainObjectLayout annotation.

In addition, the component package includes Grid, representing the top level container for a custom
layout for a domain object.  Grid itself is merely an interface, but it also defines the visitor pattern
to make it easy for validate and normalize the grid layouts.  The GridAbstract convenience
superclass provides a partial implementation of this visitor pattern.

3.13.2. Bootstrap3 Grid

As noted above, the default bootstrap3 grid classes are modelled closely on Bootstrap 3. Bootstrap’s
grid system divides the page width equally into 12 columns, and so each column spans 1 or more of
these widths.  Thus, a column with a span of 12 is the full width, one with a span of 6 is half the
width, one with a span of 4 is a third of the width, and so on.
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When specifying the span of a column, Bootstrap also allows a size to be specified (XS, SM, MD, LG).
The size determines the rules for responsive design.  Apache Isis defaults to MD but this can be
overridden.  It is also possible to specify multiple size/spans for a given column.

The grid classes provided by Apache Isis reside in the
org.apache.isis.applib.layout.grid.bootstrap3 package, and consist of:

• BS3Grid

Consists of a number of BS3Rows. 

This class is the concrete implementation of Grid interface, discussed previously.  As such, it
extends the Grid.Visitor to iterate over all of the Rows of the grid.

• BS3Row

A container of BS3Cols.  This element is rendered as <div class="row">.

• BS3Col

A container of almost everything else.  A column most commonly contains properties (grouped
into FieldSets, described above) or collections (specified by CollectionLayoutData, also above).
However, a Col might instead contain a BS3TabGroup (described below) in order that the object
members is arranged into tabs. 

It is also possible for a Col to contain the object’s title/icon (using DomainObjectLayoutData) or
indeed arbitrary actions (using `ActionLayoutData).

Finally, a BS3Col can also contain other BS3Rows, allowing arbitrarily deep hierarchies of
containers as required.

This element is rendered as, for example, <div class="col-md-4"> (for a size MD, span of 4).

• BS3TabGroup

A container of BS3Tabs.

• BS3Tab

A container of BS3Rows, which will in turn contain BS3Cols and thence ultimately the object’s
members.

There are also two close cousins of Col, namely ClearFixVisible and ClearFixHidden.  These map to
Bootstrap’s responsive utility classes, and provide greater control for responsive designs.

As you can probably guess, the BS3Grid is the top-level object (that is, it is JAXB @XmlRootElement); this
is the object that is serialized to/from XML.

All of these classes also allow custom CSS to be specified; these are added to the CSS classes for the
corresponding <div> in the rendered page.  The application.css file can then be used for
application-specific CSS, allowing arbitrary fine-tuning of the layout of the page.
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Chapter 4. Schema
Most applications need to integrate with other apps in the enterprise.  To facilitate such integration
scenarios, Apache Isis defines a number of standard XSD schemas:

• the command schema, which captures the intention of a user to invoke an action or edit a
property

• the interaction execution schema, which captures the actual execution of an action
invocation/property edit

• the changes schema, which captures which objects have been created, updated or deleted as the
result of an execution of an action invocation/property edit

• the action memento invocation schema (deprecated in 1.13.0, replaced by either "cmd" or
"ixn"), which allows action invocations to be captured and reified.

These each use XSD types defined by the common schema (most notably the oidDto complex type
which identifies a domain object).

The (non-ASF) Isis addons' command and Isis addons' publishmq modules uses these schemas to
reify corresponding applib objects (Command, Interaction.Execution and PublishedObjects), either to
persist or publishing using an Apache ActiveMQ message queue.

The sections below discuss these schemas in more detail.

4.1. Command
The command ("cmd") schema defines the serialized form of the intention to invoke an action or to
edit a property.


Mixin actions are represented as regular actions on the mixed-in object.  In other
words, the fact that the actual implementation of the action is defined by a mixin
is an implementation detail only.

4.1.1. commandDto

The commandDto root element is defined as:
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<xs:schema targetNamespace="http://isis.apache.org/schema/cmd"              ①
           elementFormDefault="qualified"
           xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns="http://isis.apache.org/schema/cmd"
           xmlns:com="http://isis.apache.org/schema/common">

    <xs:import namespace="http://isis.apache.org/schema/common"             ②
               schemaLocation="../common/common-1.0.xsd"/>

    <xs:element name="commandDto">                                          ③
        <xs:complexType>
            <xs:sequence>
                <xs:element name="majorVersion" type="xs:string"            ④
                        minOccurs="1" maxOccurs="1" default="1"/>
                <xs:element name="minorVersion" type="xs:string"
                        minOccurs="1" maxOccurs="1" default="1"/>

                <xs:element name="transactionId" type="xs:string"/>         ⑤
                <xs:element name="user" type="xs:string"/>                  ⑥
                <xs:element name="targets" type="com:oidsDto"/>             ⑦
                <xs:element name="member" type="memberDto"/>                ⑧
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    ...
</xs:schema>

① the command schema has a namespace URI of "http://isis.apache.org/schema/cmd".  Although
URIs are not the same as URLs, you will find that the schemas are also downloadable from this
location.

② uses complex types defined in the "common" schema.

③ definition of the commandDto root element.  The corresponding XML will use this as its top-level
element.

④ each instance of this schema indicates the version of the schema it is compatible with (following
semantic versioning)

⑤ unique identifier for the transaction in which this command is created.  The transaction Id is
used to correlate to the interaction that executes the command, and to any changes to domain
objects occurring as a side-effect of that interaction.

⑥ the name of the user who created the command (whose intention it is to invoke the action/edit
the property).

⑦ the target object (or objects) to be invoked.  As of 1.13.0, a bulk action will create multiple
commands, each with only a single target, but a future version of the framework may also
support a single bulk command against this multiple targets (ie all-or-nothing).

⑧ the memberDto, defined below, the captures the action/property and arguments/new value.

The CommandDto DTO corresponding to the commandDto root element can be marshalled to/from XML
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using the CommandDtoUtils class.

4.1.2. memberDto and subtypes

The memberDto complex type is an abstract type representing the intention to either invoke an action
or to edit a property.  The actionDto and propertyDto are the concrete subtypes:

<xs:schema targetNamespace="http://isis.apache.org/schema/cmd" ...>
    ...
    <xs:complexType name="memberDto" abstract="true">                       ①
        <xs:sequence>
            <xs:element name="memberIdentifier" type="xs:string"/>
        </xs:sequence>
        <xs:attribute  name="interactionType" type="com:interactionType"/>  ②
    </xs:complexType>

    <xs:complexType name="actionDto">                                       ③
        <xs:complexContent>
            <xs:extension base="memberDto">
                <xs:sequence>
                    <xs:element name="parameters" type="paramsDto"/>
                </xs:sequence>
            </xs:extension>
        </xs:complexContent>
    </xs:complexType>

    <xs:complexType name="propertyDto">                                     ④
        <xs:complexContent>
            <xs:extension base="memberDto">
                <xs:sequence>
                    <xs:element name="newValue" type="com:valueWithTypeDto"/>
                </xs:sequence>
            </xs:extension>
        </xs:complexContent>
    </xs:complexType>
</xs:schema>

① the memberDto is an abstract type.   Its primary responsibility is simply to identify the member
(action or property).

② the interactionType attribute indicates whether the member is an action or a property.

③ the actionDto complex type captures the set of parameters (also including the argument values)
with which to invoke the action.  The paramsDto type is defined below.

④ the propertyDto complex type captures the new value (possibly null) to set the property to.

Note also that there is a corresponding memberExecutionDto complex type in the "ixn" schema that is
for the actual execution (capturing metrics about its execution and also the return value if an
action invocation).
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4.1.3. Ancillary types

The schema also defines a small number of supporting types:

<xs:schema targetNamespace="http://isis.apache.org/schema/cmd" ...>
    ...
    <xs:complexType name="paramsDto">                                       ①
        <xs:sequence minOccurs="0" maxOccurs="unbounded">
            <xs:element name="parameter" type="paramDto"/>
        </xs:sequence>
    </xs:complexType>

    <xs:complexType name="paramDto">                                        ②
        <xs:complexContent>
            <xs:extension base="com:valueWithTypeDto">
                <xs:attribute name="name" use="required" type="xs:string"/>
            </xs:extension>
        </xs:complexContent>
    </xs:complexType>
</xs:schema>

① the paramsDto is simply the list of parameter/arguments.

② the paramDto complex type essentially combines a parameter with its corresponding argument: a
named value that has a type.  It extends the valueWithTypeDto complex type taken from the
"common" schema.

4.2. Interaction Execution
The interaction ("ixn") schema defines the serialized form of an action invocation or a property
edit.  In fact, it actually defines a call-graph of such executions for those cases where the
WrapperFactory is used to execute sub-actions/property edits.

Each execution identifies the target object, the member to invoke, and the arguments.  It also
captures metrics about the execution, and the result of the execution (eg return value of an action
invocation).


Mixin actions are represented as regular actions on the mixed-in object.  In other
words, the fact that the actual implementation of the action is defined by a mixin
is an implementation detail only.

4.2.1. interactionDto

The interactionDto root element is defined as:
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<xs:schema targetNamespace="http://isis.apache.org/schema/ixn"              ①
           elementFormDefault="qualified"
           xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns="http://isis.apache.org/schema/ixn"
           xmlns:cmd="http://isis.apache.org/schema/cmd"
           xmlns:com="http://isis.apache.org/schema/common">

    <xs:import namespace="http://isis.apache.org/schema/common"             ②
               schemaLocation="../common/common-1.0.xsd"/>
    <xs:import namespace="http://isis.apache.org/schema/cmd"
               schemaLocation="../cmd/cmd-1.0.xsd"/>

    <xs:element name="interactionDto">                                      ③
        <xs:complexType>
            <xs:sequence>
                <xs:element name="majorVersion" type="xs:string"            ④
                            minOccurs="0" maxOccurs="1" default="1"/>
                <xs:element name="minorVersion" type="xs:string"
                            minOccurs="0" maxOccurs="1" default="0"/>

                <xs:element name="transactionId" type="xs:string"/>         ⑤
                <xs:element name="execution" type="memberExecutionDto"/>    ⑥
            </xs:sequence>
        </xs:complexType>
    </xs:element>

</xs:schema>

① the interaction schema has a namespace URI of "http://isis.apache.org/schema/ixn".  Although
URIs are not the same as URLs, you will find that the schemas are also downloadable from this
location.

② uses complex types defined in the "common" schema and also the "cmd" schema

③ definition of the interactionDto root element.  The corresponding XML will use this as its top-
level element.

④ each instance of this schema indicates the version of the schema it is compatible with (following
semantic versioning)

⑤ unique identifier for the transaction in which this interaction is being executed.  The transaction
Id is used to correlate back to the command that represented the intention to perform this
execution, as well as to any changes to domain objects that occur as a side-effect of the
interaction.

⑥ the top-level memberExecutionDto, defined below, either an action invocation or edit of a property.

The InteractionDto DTO corresponding to the interactionDto root element can be marshalled
to/from XML using the InteractionDtoUtils class.
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4.2.2. memberExecutionDto

The memberExecutionDto complex type is an abstract type representing either the invocation an
action or the editing of a property.  It corresponds to the memberDto of the "cmd" schema; some
elements are copied directly:

<xs:schema targetNamespace="http://isis.apache.org/schema/ixn" ... >
    ...
    <xs:complexType name="memberExecutionDto" abstract="true">              ①
        <xs:sequence>
            <xs:element name="sequence" type="xs:int"/>                     ②
            <xs:element name="target" type="com:oidDto"/>                   ③
            <xs:element name="memberIdentifier" type="xs:string"/>          ④
            <xs:element name="user" type="xs:string"/>                      ⑤
            <xs:element name="title" type="xs:string"/>                     ⑥
            <xs:element name="metrics" type="metricsDto"/>                  ⑦
            <xs:element name="threw" type="exceptionDto"                    ⑧
                        minOccurs="0" maxOccurs="1"/>
            <xs:element name="childExecutions" minOccurs="0" maxOccurs="1"> ⑨
                <xs:complexType>
                    <xs:sequence>
                        <xs:element name="execution" type="memberExecutionDto"
                                    minOccurs="0" maxOccurs="unbounded"/>
                    </xs:sequence>
                </xs:complexType>
            </xs:element>
        </xs:sequence>
        <xs:attribute  name="interactionType" type="com:interactionType"/>  ⑩
    </xs:complexType>
    ...
</xs:schema>

① the memberExecutionDto is an abstract type

② uniquely identifies this execution within the transaction.  Can be combined with transactionId
to create a unique identifier (across all other interaction executions and also changed objects
events) of this particular interaction execution.

③ the target object, corresponding to one of the elements of the targets element of the memberDto

④ the member identifier; corresponds to memberIdentifier of the member element of the memberDto

⑤ the user executing the action invocation/property edit; corresponds to the user element of the
memberDto

⑥ the current "human-friendly" title of the target object

⑦ the set of metrics captured for this execution, of type metricsDto defined below.

⑧ if the action invocation/property edit threw an exception, then this is captured here.

⑨ if any sub-actions or sub-edits were performed via the WrapperFactory, then these are captured
in the childExecutions element.

⑩ the interactionType attribute indicates whether the member is an action or a property (similar
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attribute exists for the "cmd" schema).

The actionInvocationDto and propertyEditDto are the concrete subtypes:

<xs:schema targetNamespace="http://isis.apache.org/schema/ixn" ... >
    ...
    <xs:complexType name="actionInvocationDto">                             ①
        <xs:complexContent>
            <xs:extension base="memberExecutionDto">
                <xs:sequence>
                    <xs:element name="parameters" type="cmd:paramsDto"/>    ②
                    <xs:element name="returned"                             ③
                                type="com:valueWithTypeDto"
                                minOccurs="0" maxOccurs="1"/>
                </xs:sequence>
            </xs:extension>
        </xs:complexContent>
    </xs:complexType>
    ...
    <xs:complexType name="propertyEditDto">                                 ④
        <xs:complexContent>
            <xs:extension base="memberExecutionDto">
                <xs:sequence>
                    <xs:element name="newValue"                             ⑤
                                type="com:valueWithTypeDto"/>
                </xs:sequence>
            </xs:extension>
        </xs:complexContent>
    </xs:complexType>
    ...
</xs:schema>

① the actionInvocationDto inherits from memberExecutionDto.  It corresponds to the similar
actionDto complex type of the "cmd" schema

② the parameters element captures the parameter and argument values; for the top-level execution
it is a direct copy of the corresponding parameters element of the actionDto complex type of the
"cmd" schema.

③ the returned element captures the returned value (if not void).  It is not valid for both this
element and the inherited threw element to both be populated.

④ the propertyEditDto inherits from memberExecutionDto.  It corresponds to the similar propertyDto
complex type of the "cmd" schema

⑤ the newValue element captures the new value; for the top-level execution it is a direct copy of the
corresponding newValue element of the propertyDto complex type of the "cmd" schema.

4.2.3. Ancillary types

The schema also defines a small number of supporting types:
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<xs:schema targetNamespace="http://isis.apache.org/schema/ixn" ... >
    ...
    <xs:complexType name="metricsDto">                                      ①
        <xs:sequence>
            <xs:element name="timings" type="com:periodDto"/>
            <xs:element name="objectCounts" type="objectCountsDto"/>
        </xs:sequence>
    </xs:complexType>

    <xs:complexType name="objectCountsDto">                                 ②
        <xs:sequence>
            <xs:element name="loaded" type="com:differenceDto"/>
            <xs:element name="dirtied" type="com:differenceDto"/>
        </xs:sequence>
    </xs:complexType>

    <xs:complexType name="exceptionDto"/>                                   ③
        <xs:sequence>
            <xs:element name="message" type="xs:string"/>
            <xs:element name="stackTrace" type="xs:string"/>
            <xs:element name="causedBy" type="exceptionDto" minOccurs="0"
maxOccurs="1"/>
        </xs:sequence>
    </xs:complexType>
</xs:schema>

① the metricsDto captures the time to perform an execution, and also the differences in various
object counts.

② the objectCountsDto complex type is the set of before/after differences, one for each execution;
the framework tracks number of objects loaded (read from) the database and the number of
objects dirtied (will need to be saved back to the database).  Together these metrics give an idea
of the "size" of this  particular execution.

③ the exceptionDto complex type defines a structure for capturing the stack trace of any exception
that might occur in the course of invoking an action or editing a property.

The changes schema also provides metrics on the number of objects loaded/changed, but relates to
the entire interaction rather than just one (sub)execution of an interaction.

4.3. Changes
The changes ("chg") schema defines the serialized form identifying which objects have been
created, updated or deleted as the result of invoking an action or editing a property.  It also
captures a number of other metrics counts (number of objects loaded, number of object properties
modified), useful for profiling.

An instance of the DTO (corresponding to this schema) is used within the PublisherService SPI,
identifying changed objects that are to be published (as per @DomainObject#publishing() or
equivalent).
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4.3.1. changesDto

The changesDto root element is defined as:

<xs:schema targetNamespace="http://isis.apache.org/schema/chg"
①
           elementFormDefault="qualified"
           xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns="http://isis.apache.org/schema/chg"
           xmlns:com="http://isis.apache.org/schema/common">

    <xs:import namespace="http://isis.apache.org/schema/common"
②
               schemaLocation="../common/common-1.0.xsd"/>

    <xs:element name="changesDto">
③
        <xs:complexType>
            <xs:sequence>
                <xs:element name="majorVersion" type="xs:string"
④
                            minOccurs="0" maxOccurs="1" default="1"/>
                <xs:element name="minorVersion" type="xs:string"
                            minOccurs="0" maxOccurs="1" default="0"/>

                <xs:element name="transactionId" type="xs:string"/>
⑤
                <xs:element name="sequence" type="xs:int"/>
⑥
                <xs:element name="completedAt" type="xs:dateTime" minOccurs="0"
maxOccurs="1"/> ⑦
                <xs:element name="user" type="xs:string"/>
⑧
                <xs:element name="objects" type="objectsDto"/>
⑨
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    ...
</xs:schema>

① the changes schema has a namespace URI of "http://isis.apache.org/schema/chg".  Although URIs
are not the same as URLs, you will find that the schemas are also downloadable from this
location.

② uses complex types defined in the "common" schema.

③ definition of the changesDto root element.  The corresponding XML will use this as its top-level
element.

④ each instance of this schema indicates the version of the schema it is compatible with (following
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semantic versioning)

⑤ unique identifier for the transaction in which this interaction is being executed.  The transaction
Id is used to correlate back to the command that represented the intention to perform this
execution, as well as to the interaction that executes said command.

⑥ uniquely identifies this set of changes within the interaction.  Can be combined with
transactionId to create a unique identifier (across all other changed object events and also any
interaction executions) of this particular set of changed objects.

⑦ the date/time that the transaction that dirtied this objects completed

⑧ the user that executed the (top-level) action invocation/property edit.

⑨ identifies the objects that have changed.

The ChangesDto DTO corresponding to the changesDto root element can be marshalled to/from XML
using the ChangesDtoUtils class.

4.3.2. objectsDto

The objectsDto complex type actually identifies the objects created, updated or deleted.  It also
captures additional metrics counters:

<xs:schema targetNamespace="http://isis.apache.org/schema/chg" ... >
    ...
    <xs:complexType name="objectsDto">
        <xs:sequence>
            <xs:element name="loaded" type="xs:int"/>
①
            <xs:element name="created" type="com:oidsDto"/>
②
            <xs:element name="updated" type="com:oidsDto"/>
            <xs:element name="deleted" type="com:oidsDto"/>
            <xs:element name="propertiesModified" type="xs:int"/>
③
        </xs:sequence>
    </xs:complexType>
</xs:schema>

① the number of objects that were loaded, in total, by the interaction.

② the identities of the objects that were, respectively, created, updated or deleted within the
transaction.

③ the number of objects' properties changed, in total, by the interaction.

The interaction schema also provides metrics on the number of objects loaded/changed, but is more
granular, each figure relating to a single (sub-)execution within an interaction.

4.4. Action Invocation Memento
The "aim" schema defines the serialized form (or memento) of an action invocation.
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

This schema has been removed in 1.13.0, replaced with ixn.xsd (for action
invocations/property edits) and with cmd.xsd (commands, ie the intention to
invoke an action/edit a property).

The remaining content on this page describes how CommandContext works up to
v1.12.x.  However, as of 1.13.0 the CommandContext uses its own cmd.xsd schema).

Action invocations are captured (in memory rather than in serialized form) when the end-user
invokes the action "through" the UI, by way of the CommandContext service. Using the
ActionInvocationMementoDtoUtils utility class, a service can instantiate ActionInvocationMementoDto
which can then be serialized to/from using the same ActionInvocationMementoDtoUtils class.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://isis.apache.org/schema/aim"
①
           elementFormDefault="qualified"
           xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns="http://isis.apache.org/schema/aim"
           xmlns:common="http://isis.apache.org/schema/common">

    <xs:import namespace="http://isis.apache.org/schema/common"
②
               schemaLocation="http://isis.apache.org/schema/common/common-1.0.xsd"/>

    <xs:element name="actionInvocationMementoDto">
③
        <xs:complexType>
            <xs:sequence>
                <xs:element name="metadata">
                    <xs:complexType>
                        <xs:sequence>
                            <xs:element name="transactionId" type="xs:string"/>
④
                            <xs:element name="sequence" type="xs:int"/>
⑤
                            <xs:element name="timestamp" type="xs:dateTime"/>
⑥
                            <xs:element name="target" type="common:oidDto"/>
⑦
                            <xs:element name="targetClass" type="xs:string"/>
⑧
                            <xs:element name="targetAction" type="xs:string"/>
⑨
                            <xs:element name="actionIdentifier" type="xs:string"/>
⑩
                            <xs:element name="user" type="xs:string"/>
⑪
                            <xs:element name="title" type="xs:string"/>
⑫
                        </xs:sequence>
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                    </xs:complexType>
                </xs:element>
                <xs:element name="payload">
                    <xs:complexType>
                        <xs:sequence>
                            <xs:element name="parameters">
⑬
                                <xs:complexType>
                                    <xs:sequence maxOccurs="unbounded">
                                        <xs:element name="param" type="paramDto"/>
                                    </xs:sequence>
                                    <xs:attribute name="num" use="required"
type="xs:int"/>
                                </xs:complexType>
                            </xs:element>
                            <xs:element name="return" type="common:valueDto"
⑭
                                        minOccurs="0" maxOccurs="1"/>
                        </xs:sequence>
                    </xs:complexType>
                </xs:element>
            </xs:sequence>
        </xs:complexType>
    </xs:element>

    <xs:complexType name="paramDto">
⑮
        <xs:sequence>
            <xs:element name="value" type="common:valueDto"/>
⑯
        </xs:sequence>
        <xs:attribute name="parameterName" use="required" type="xs:string"/>
⑰
        <xs:attribute name="parameterType" use="required" type="common:valueType"/>
        <xs:attribute name="null" use="optional" type="xs:boolean"/>
    </xs:complexType>
</xs:schema>

① the aim schema has a namespace URI of "http://isis.apache.org/schema/aim".  Although URIs are
not the same as URLs, you will find that the schemas are also downloadable from this location.

② reuses the common schema

③ definition of the actionInvocationMementoDto complex type. This consists of metadata (the
transaction identifier, the target object, the initiating user) and the payload (the action
parameter/arguments, the return value if known).

④ the unique transaction Id (a guid) allocated by the framework for each and every transaction

⑤ a sequence number within the transaction.  It is possible for there to be more than one action
invocation to be

⑥ when the action was invoked
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⑦ target object, as an OID (using oidDto from the common schema)

⑧ fully qualified class name of the target object, for information only

⑨ name of the action, for information only

⑩ Javadoc style unique identifier for the action.

⑪ User that invoked the action

⑫ title of the target object, for information only

⑬ Collection of parameter/arguments, defined in terms of the paramDto complex type (discussed
just below)

⑭ The return value of the action, if known (and not void)

⑮ The paramDto defines both an action parameter and its corresponding argument values

⑯ The value of the parameter, in other words an argument value

⑰ Metadata about the parameter itself: its name, type, optionality.


As of 1.11.0 through 1.12.2 this schema is not used directly by the framework; in
particular Command#setMemento(…) sets a similar but less formal XML structure.
This may change in the future.

4.5. Common Schema
The "common" schema defines a number of complex types that are used by other higher-level
schemas.

4.5.1. oidDto

The oidDto complex type captures an object’s type and its identifier.  This is basically a formal XML
equivalent to the Bookmark object obtained from the BookmarkService.

Although simple, this is an enormously powerful concept, in that it represents a URI to any domain
object managed by a given Apache Isis application.  With it, we have the ability to lookup any
arbitrary object.  Further discussion and examples can be found here.

The oidDto complex type is defined as:
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<xs:schema targetNamespace="http://isis.apache.org/schema/common"
①
           elementFormDefault="qualified"
           xmlns="http://isis.apache.org/schema/common"
           xmlns:xs="http://www.w3.org/2001/XMLSchema">

    <xs:complexType name="oidDto">
②
        <xs:sequence/>
        <xs:attribute name="type" type="xs:string"/>
③
        <xs:attribute name="id" type="xs:string"/>
④
        <xs:attribute name="objectState" type="bookmarkObjectState"/>
    </xs:complexType>

    <xs:simpleType name="bookmarkObjectState">
⑤
        <xs:restriction base="xs:string">
            <xs:enumeration value="persistent"/>
            <xs:enumeration value="transient"/>
            <xs:enumeration value="viewModel"/>
        </xs:restriction>
    </xs:simpleType>

    <xs:complexType name="oidsDto">
⑥
        <xs:sequence>
            <xs:element name="oid" type="oidDto" minOccurs="1" maxOccurs="unbounded"/>
        </xs:sequence>
    </xs:complexType>
    ...
</xs:schema>

① the common schema has a namespace URI of "http://isis.apache.org/schema/common".  Although
URIs are not the same as URLs, you will find that the schemas are also downloadable from this
location.

② the oidDto complex type defines the unique identifier for any domain object: its type, and an
identifier.  The objectState attribute can usually be omitted (indicating a persistent object)

③ the object type, corresponding to either the @DomainObject#objectType() attribute, or to the (JDO)
@PersistenceCapable annotation (schema and/or table attributes), or to the (JDO) @Discriminator
annotation.  If none is specified, then the fully qualified class name will be used.

④ the object identifier (aka primary key), converted to string form.

⑤ the bookmarkObjectState enumerates the possible persistence states of the referenced object.  In
previous versions of the schema the attribute was defaulted to "persistent"; the "persistent" state
is assumed if the attribute is omitted.

⑥ Models a list of OIDs.  This is used by the "cmd" schema to represent the intention to perform a
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bulk actions (against a number of selected objects).

In previous versions of the schema the object type and object identifers of oidDto were modelled as
an element rather than an attribute.  The element form can still be used, but is deprecated.

The oidDto complex type is used in a number of places by the framework:

• first, as a means of serializing JAXB view model/DTOs (annotated with @XmlRootElement), that
reference domain entities.

These references are serialized instead into OIDs

• second, as references to the target of a command representing the intention to invoke an action
or edit a property, as described by the "cmd" (command) schema.

They are also used to represent references to any action arguments/properties that take domain
object entities/view models.

• third, as references to the target of an interaction capturing the actual execution of an action
invocation or property edit, as described by the "ixn" (interaction) schema.

4.5.2. valueDto etc

The common schema also defines two types representing values: the valueDto complex type, the
valueType simple type and the valueWithTypeDto complex type:
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<xs:schema targetNamespace="http://isis.apache.org/schema/common" ... >
    ...
    <xs:complexType name="valueDto">                                ①
        <xs:choice minOccurs="0" maxOccurs="1">
            <xs:element name="string" type="xs:string"/>
            <xs:element name="byte" type="xs:byte"/>
            <xs:element name="short" type="xs:short"/>
            ...
            <xs:element name="timestamp" type="xs:dateTime"/>
            <xs:element name="enum" type="enumDto"/>
            <xs:element name="reference" type="oidDto"/>
        </xs:choice>
    </xs:complexType>

    <xs:simpleType name="valueType">                                ②
        <xs:restriction base="xs:string">
            <xs:enumeration value="string"/>
            <xs:enumeration value="byte"/>
            <xs:enumeration value="short"/>
            ...
            <xs:enumeration value="enum"/>
            <xs:enumeration value="reference"/>
            <xs:enumeration value="void"/>                          ③
        </xs:restriction>
    </xs:simpleType>

    <xs:complexType name="valueWithTypeDto">                        ④
        <xs:complexContent>
            <xs:extension base="valueDto">
                <xs:attribute name="type" use="required" type="valueType"/>
                <xs:attribute name="null" use="optional" type="xs:boolean"/>
            </xs:extension>
        </xs:complexContent>
    </xs:complexType>
    ...
</xs:schema>

① Intended to hold any valid value, eg of an argument to an action or a new value of a property.

② Enumerates the full set of types understood by the framework; note that these also include
references to entities or view models, and to enums.

③ Not valid to be used as the parameter type of an action; can be used as its return type.

④ Inherits from valueDto, capturing both a value and its corresponding type.  Used for the return
value of action invocations, and for the new value in property edits.

These type definitions are just building blocks, also used within the action iInvocation memento
schema.  The first, valueDto is The second, valueType, enumerates the different types of vales, eg of a
formal parameter to an action.
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4.5.3. Ancillary types

The common schema also defines a number of ancillary types, used either by the common schema
itself (see above) or by the "cmd" and "ixn" schemas.

<xs:schema targetNamespace="http://isis.apache.org/schema/common" ... >
    ...
    <xs:complexType name="enumDto">                                 ①
        <xs:sequence>
            <xs:element name="enumType" type="xs:string"/>
            <xs:element name="enumName" type="xs:string"/>
        </xs:sequence>
    </xs:complexType>

    <xs:complexType name="periodDto">                               ②
        <xs:sequence>
            <xs:element name="startedAt" type="xs:dateTime"/>
            <xs:element name="completedAt" type="xs:dateTime"
                        minOccurs="0" maxOccurs="1"/>
        </xs:sequence>
    </xs:complexType>

    <xs:complexType name="differenceDto">                           ③
        <xs:sequence/>
        <xs:attribute name="before" type="xs:int"/>
        <xs:attribute name="after" type="xs:int"/>
    </xs:complexType>

    <xs:simpleType name="interactionType">                          ④
        <xs:restriction base="xs:string">
            <xs:enumeration value="action_invocation" />
            <xs:enumeration value="property_edit" />
        </xs:restriction>
    </xs:simpleType>
</xs:schema>

① Models an instance member of an enum (eg Color.RED).

② Captures a period of time, eg for capturing metrics/timings.

③ Captures a pair of numbers representing a difference.  Used for example to capture metrics
(number objects modified before and after).

④ Whether this command/interaction with a member is invoking an action, or editing a property.
Used by both the "cmd" and "ixn" schemas.
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