
Annotations

Table of Contents
1. Annotations . 1

1.1. Other Guides . 1

1.2. Examples . 1

2. Summary . 3

2.1. Core annotations . 3

2.2. Other Isis Annotations . 4

2.3. JDO Annotations . 4

2.4. Java EE Annotations . 6

2.5. Deprecated Annotations . 6

2.6. Incomplete/partial support . 12

3. @Action . 15

3.1. command() . 16

3.2. domainEvent() . 19

3.3. hidden() . 22

3.4. invokeOn() . 22

3.5. publishing() . 23

3.6. restrictTo() . 24

3.7. semantics(). 25

3.8. typeOf() . 27

4. @ActionLayout . 28

4.1. bookmarking() . 29

4.2. contributedAs() . 31

4.3. cssClass() . 32

4.4. cssClassFa() . 32

4.5. describedAs() . 33

4.6. hidden() . 34

4.7. named() . 35

4.8. position() . 35

5. @Collection . 38

5.1. domainEvent() . 39

5.2. editing() . 42

5.3. hidden() . 43

5.4. notPersisted() . 44

5.5. typeOf() . 45

6. @CollectionLayout . 46

6.1. cssClass() . 47

6.2. defaultView() . 48

6.3. describedAs() . 49

6.4. hidden() . 49

6.5. named() . 50

6.6. paged() . 51

6.7. render() . 52

6.8. sortedBy() . 52

7. @Column (javax.jdo) . 55

7.1. Nullability . 55

7.2. Length for Strings . 55

7.3. Length/scale for BigDecimals . 56

7.4. Hints and Tips . 56

7.5. Mapping Blobs and Clobs . 57

8. @Digits (javax) . 59

9. @Discriminator (javax.jdo) . 60

10. @DomainObject . 62

10.1. auditing() . 63

10.2. autoCompleteRepository() . 64

10.3. bounded() . 66

10.4. createdLifecycleEvent() . 67

10.5. editing() . 68

10.6. loadedLifecycleEvent() . 69

10.7. nature() . 71

10.8. persistedLifecycleEvent() . 73

10.9. persistingLifecycleEvent() . 75

10.10. objectType() . 76

10.11. publishing() . 77

10.12. removingLifecycleEvent() . 78

10.13. updatingLifecycleEvent() . 80

10.14. updatedLifecycleEvent() . 82

11. @DomainObjectLayout . 85

11.1. bookmarking() . 86

11.2. cssClass() . 88

11.3. cssClassFa() . 88

11.4. cssClassUiEvent() . 89

11.5. describedAs() . 91

11.6. iconUiEvent() . 91

11.7. named() . 93

11.8. paged() . 94

11.9. plural() . 94

11.10. titleUiEvent() . 95

12. @DomainService . 98

12.1. nature() . 98

12.2. repositoryFor() . 100

13. @DomainServiceLayout . 101

13.1. menuBar() . 101

13.2. menuOrder() . 104

13.3. named() . 105

14. @Facets . 107

15. @HomePage . 108

16. @Inject (javax) . 110

16.1. Alternative syntaxes . 110

16.2. Injecting collection of services . 111

16.3. Manually injecting services. 111

17. @MemberGroupLayout . 113

18. @MemberOrder . 114

19. @Nullable (javax) . 115

20. @NotPersistent (javax.jdo) . 116

21. @MinLength . 117

22. @Parameter . 118

22.1. fileAccept() . 119

22.2. maxLength() . 120

22.3. mustSatisfy() . 120

22.4. optionality() . 121

22.5. regexPattern() . 122

23. @ParameterLayout . 124

23.1. cssClass() . 125

23.2. describedAs() . 125

23.3. labelPosition() . 126

23.4. multiLine() . 127

23.5. named() . 127

23.6. renderedAsDayBefore() . 128

23.7. typicalLength() . 129

24. @PersistenceCapable (javax.jdo) . 130

25. @PostConstruct (javax) . 132

26. @PreDestroy (javax) . 134

27. @PrimaryKey (javax.jdo) . 135

28. @Programmatic . 136

29. @Property . 137

29.1. domainEvent() . 138

29.2. editing() . 142

29.3. fileAccept() . 142

29.4. hidden() . 143

29.5. maxLength() . 144

29.6. mustSatisfy() . 145

29.7. notPersisted() . 146

29.8. optionality() . 147

29.9. regexPattern() . 150

30. @PropertyLayout . 151

30.1. cssClass() . 152

30.2. describedAs() . 153

30.3. labelPosition() . 153

30.4. multiLine() . 155

30.5. named() . 156

30.6. renderedAsDayBefore() . 157

30.7. typicalLength() . 157

31. @RequestScoped (javax) . 159

32. @Title . 160

32.1. Lombok support . 160

33. @ViewModel . 162

34. @ViewModelLayout . 163

34.1. cssClass() . 164

34.2. cssClassFa() . 164

34.3. describedAs() . 165

34.4. named() . 165

34.5. paged() . 166

34.6. plural() . 166

35. @XmlJavaTypeAdapter (jaxb) . 167

36. @XmlRootElement (jaxb) . 168

36.1. Example . 168

36.2. See also . 169

Chapter 1. Annotations
This guide describes the various annotations used by Apache Isis to provide additional metadata
about the domain objects. Most of these are defined by Isis itself, but some are from other libraries.
It also identifies a number of annotations that are now deprecated, and indicates their
replacement.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations (this guide)

• Domain Services

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)

1.2. Examples
To give just a few examples of annotations supported by Apache Isis:

• if a property is read-only, then this can be annotated with @Property(editing=EditingDISABLED).

• if a class has a small fixed set of instances (eg a picklist), then it can be annotated using
@DomainObject(bounded=true)

1

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgsvc.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

• if a class is a domain service and should be automatically instantiated as a singleton, then it can
be annotated using @DomainService

• if an action is idempotent, then it can be annotated using
@Action(semantics=SemanticsOf.IDEMPOTENT).

• if an action parameter is optional, it can be annotated using
@Parameter(optionality=Optionality.OPTIONAL)

Some annotations act as UI hints, for example:

• if a collection should be rendered "open" rather than collapsed, it can be annotated using
@CollectionLayout(render=RenderType.EAGERLY)

• if an action has a tooltip, it can be annotated using @ActionLayout(describedAs=…)

• if a domain object is bookmarkable, it can be annotated using
@DomainObjectLayout(bookmarking=BookmarkPolicy.AS_ROOT).

2

Chapter 2. Summary
This section summarizes the various annotations supported by Apache Isis. They break out into
five categories.

2.1. Core annotations
In Apache Isis every domain object is either a domain entity, a view model or a domain service.
And each of these are made up of properties, collections and actions (domain services only have
actions).

For each of these domain types and members there are two annotations. One covers the semantics
intrinsic to the domain (eg whether an action parameter is optional or not), then other (suffix …
Layout) captures semantics relating to the UI/presentation layer.

 Most UI semantics can also be specified using dynamic object layout.

The table below summarizes these most commonly used annotations in Apache Isis.

Table 1. Core annotations for domain objects, services and members (as of 1.8.0)

Annotation Purpose Layer Dynamic
layout?

@Action Domain semantics for actions Domain

@ActionLayout User interface hints for actions UI Yes

@Collection Domain semantics for collections Domain

@CollectionLayout User interface hints for collections UI Yes

@DomainObject Domain semantics for domain object (entities
and optionally view models, see also @ViewModel)

Domain

@DomainObjectLayout User interface hints for domain object (entities
and optionally view models, see also
@ViewModelLayout)

UI Yes

@DomainService Class is a domain service (rather than an entity
or view model)

Domain

@DomainServiceLayout User interface hints for domain services UI

@Parameter Domain semantics for action parameters Domain

@ParameterLayout Layout hints for an action parameter (currently:
its label position either to top or the left).

UI Yes

@Property Domain semantics for properties Domain

@PropertyLayout Layout hints for a property UI Yes

3

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic

Annotation Purpose Layer Dynamic
layout?

@ViewModel Specify that a class is a view model (as opposed
to an entity or domain service); equivalent to
@DomainObject(nature=VIEW_MODEL).

Domain,
Persistence

@ViewModelLayout User interface hints for view models. For use
with @ViewModel. If specifying view models using
@DomainObject(nature=VIEW_MODEL) then use
@DomainObjectLayout)

UI Yes

2.2. Other Isis Annotations
These annotations are also commonly used, but relate not to objects or object members but instead
to other aspects of the Apache Isis metamodel.

Table 2. Other Isis Annotations

Annotation Purpose Layer Dynamic
layout?

@Facets Install arbitrary facets within the Apache Isis
metamodel.

(any)

@HomePage Query-only action (on domain service) to be
invoked, result of which is rendered as the
user’s home page.

UI

@MemberOrder Ordering of properties, collections and actions,
and also associating actions with either a
property or a collection.

UI Yes

@MinLength Minimum number of characters required for an
auto-complete search argument.

UI

@Programmatic Ignore a public method, excluded from the
Apache Isis metamodel.

Domain

2.3. JDO Annotations
Apache Isis uses JDO/DataNucleus as its ORM, and infers some of its own metadata from the JDO
annotations.



Isis (currently) builds up metadata by parsing the JDO annotations from source,
not by querying the JDO metamodel. The upshot is that, for the annotations
documented here at least, your domain entities must use JDO annotations rather
than XML.

Furthermore, note that although JDO (the property-related) annotations to be
placed on either the field or on the getter, Apache Isis requires that annotations
are placed on the getter.

4

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic

The table below lists the JDO annotations currently recognized by Apache Isis.

Table 3. JDO Annotations

Annotation Purpose Layer Applies to

@javax.jdo.annotations
.
Column

Used to determine whether a property is
mandatory or optional. For String and
BigDecimal properties, used to determine
length/precision/scale.

Domain /
persistence

Property

@javax.jdo.annotations
.
Discriminator

Override for the object type, as used in
Bookmark`s, URLs for RestfulObjects viewer and
elsewhere.
Note that the discriminator overrides the
object type that may otherwise be inferred
from the @PersistenceCapable` annotation.

Domain /
persistence

Class

@javax.jdo.annotations
.
NotPersistent

Used to determine whether to enforce or skip
some metamodel validation for @Column versus
equivalent Isis annotations.

Domain /
persistence

Property

@javax.jdo.annotations
.
PersistenceCapable

Used to build Apache Isis' own internal
identifier for objects.
 If the
<code>schema()</code> attribute is specified
(and if <a anchor="rgant-
Discriminator"><code>@Discriminator</code></
a> _hasn’t been specified), is also
used to derive the object type, as used in
`Bookmark`s, URLs for RestfulObjects viewer and
elsewhere.

Domain /
persistence

Class

@javax.jdo.annotations
.
PrimaryKey

Used to ensure Apache Isis does not overwrite
application-defined primary keys, and to ensure
is read-only in the UI.

Domain /
persistence

Property

Isis also parses the following JDO annotations, but the metadata is currently unused.

Table 4. JDO Annotations (unused within Apache Isis)

Annotation Purpose Layer Applies to

@javax.jdo.annotations
.
DataStoreIdentity

Unused Persistence Class

@javax.jdo.annotations
.
EmbeddedOnly

Unused Persistence Class

@javax.jdo.annotations
.
Query

Unused Persistence Class

5

ugvro.pdf
ugbtb.pdf#_ugbtb_programming-model_custom-validator

2.4. Java EE Annotations
While Apache Isis does, as of today, define a good number of its own annotations, the policy is to
reuse standard Java/JEE annotations wherever they exist or are added to the Java platform.

The table below lists the JEE annotations currently recognized. Expect to see more added in future
releases of Apache Isis.

Table 5. Java EE Annotations

Annotation Purpose Layer Dynamic
layout?

@javax.validation.
constraints.
Digits

Precision/scale for BigDecimal values. Domain

@javax.inject.
Inject

Inject domain service into a domain object
(entity or view model) or another domain
service.

Domain

@javax.annotation.
Nullable

Specify that a property/parameter is optional. Domain

@javax.annotation.
PostConstruct

Callback for domain services (either singleton or
request-scoped) to initialize themselves once
instantiated.

Domain

@javax.annotation.
PreDestroy

Callback for domain services (either singleton or
request-scoped) to clean up resources prior to
destruction.

Domain

@javax.enterprise.
context.
RequestScoped

Specify that a domain service has request-scope
(rather than a singleton).

Domain

javax.xml.bind
.annotation
XmlRootElement

JAXB annotation indicating the XML root
element when serialized to XML; also used by
the framework for view models (whose
memento is the XML), often also acting as a DTO.

Applicatio
n

javax.xml.bind
.annotation
XmlJavaTypeAdapter

JAXB annotation defining how to serialize an
entity. Used in conjunction with the (framework
provided) PersistentEntityAdapter class to
serialize persistent entities into a canonical OID
(equivalent to the Bookmark provided by the
BookmarkService).

Domain

2.5. Deprecated Annotations
As Apache Isis has evolved and grown, we found ourselves adding more and more annotations; but
most of these related to either an object type (entity, view model, service) or an object member
(property, collection, action). Over time it became harder and harder for end programmers to
discover these new features.

6

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
rgsvc.pdf#_rgsvc_api_BookmarkService

Accordingly, (in v1.8.0) we decided to unify the semantics into the main (core) annotations listed
above.

The annotations listed in the table below are still supported by Apache Isis, but will be retired in
Apache Isis v2.0.

Table 6. Deprecated Annotations

Annotation Purpose Use instead Layer Dynam
ic
layout?

@ActionOrder Order of buttons and menu items
representing actions.

@MemberOrder UI Yes

@ActionInteracti
on

Enable subscribers on the Event
Bus Service to either veto, validate
or take further steps before/after
an action has been invoked.

@Action#domainEvent() Domain

@ActionSemantics Query-only, idempotent or non-
idempotent.

@Action#semantics() Domain

@Audited Audit changes to an object. @DomainObject#
auditing()

Domain

@AutoComplete Repository method to search for
entities

@DomainObject
#autoCompleteRepository(
)

UI/Dom
ain

@Bookmarkable Whether (and how) to create a
bookmark for visited object.

@DomainObjectLayout
#bookmarking()

UI

@Bounded Bounded (and limited) number of
instances of an entity type,
translates into a drop-down for
any property of that type.

@DomainObject#bounded() Domain

@Bulk Indicates an action is a bulk action,
can be applied to multiple
instances.

@Action#invokeOn() UI,
Domain

@CollectionInter
action

Enable subscribers on the Event
Bus Service to either veto, validate
or take further steps before/after a
collection has been added to or
removed from.

@Collection#domainEvent(
)

Domain

@Command Action invocation should be reified
as a command object, optionally
persistable for profiling and
enhanced auditing, and
background/async support.

@Action#command() Domain

7

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic

Annotation Purpose Use instead Layer Dynam
ic
layout?

@CssClass Allow visual representation of
individual objects or object
members layout to be customized
by application-specific CSS.

#cssClass() attribute for:
@DomainObjectLayout,
@PropertyLayout,
@CollectionLayout,
@ActionLayout and
@ParameterLayout

UI Yes

@CssClassFa So that font awesome icons can be
applied to action buttons/menu
items and optionally as an object
icon.

cssClassFa() attribute for:
@ActionLayout,
DomainObjectLayout and
ViewModelLayout

UI Yes

@Debug Action only invokable in debug
mode.

Not supported by either
the Wicket viewer or the
RestfulObjects viewer;
use prototype mode
instead
(@Action#restrictTo())

UI

@DescribedAs Provide a longer description/tool-
tip of an object or object member.

#describedAs() attribute
for @DomainObjectLayout,
@PropertyLayout,
@CollectionLayout,
@ActionLayout and
@ParameterLayout

UI Yes

@Disabled Object property cannot be edited,
an object collection cannot be
added to/removed from, or an
object action cannot be invoked.

#editing() attribute for
@Property, @Collection
and @DomainObject

UI,
Domain

Yes

@Exploration Action available in special
'exploration' mode.

Not supported by either
the Wicket viewer or the
RestfulObjects viewer;
use prototype mode
instead
(@Action#restrictTo())

UI

@FieldOrder Order of properties and
collections.

@MemberOrder UI Yes

@Hidden Object member is not visible, or on
domain service (to indicate that
none of its actions are visible).

For domain object
members, use #hidden()
attribute of Action,
Property or Collection.
For domain service, use
@DomainService(
nature=DOMAIN)

UI,
Domain

Yes

@Idempotent Whether an action is idempotent
(can be invoked multiple times
with same post-condition).

@Action#semantics Domain

8

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugvw.pdf
ugvro.pdf
ugvw.pdf
ugvro.pdf

Annotation Purpose Use instead Layer Dynam
ic
layout?

@Ignore Exclude this method from the
metamodel.

@Programmatic.
@Ignore was deprecated
because it can easily clash
with @org.junit.Ignore.

Domain

@Immutable An object’s state cannot be
changed (properties cannot be
edited, collections cannot be added
to or removed from). Actions can
still be invoked.

@DomainObject#editing() Domain

@Mask How to parse/render values (never
properly supported)

(None) UI/dom
ain

@MaxLength Maximum length of a property
value (strings).

#maxLength() attribute for
@Property or @Parameter

Domain

@MemberGroups Layout of properties and
collections of a domain object or
view model object.

dynamic .layout.xml files UI Yes

@MemberGroup
Layout`

Grouping of properties into
groups, and organizing of
properties, collections into
columns.

dynamic .layout.xml files UI Yes

@MultiLine Render string property over
multiple lines (a textarea rather
than a textbox).

#multiLine() attribute for
@Property or @Parameter

UI Yes

@MustSatisfy Specify arbitrary specification
constraints on a property or action
parameter.

#mustSatisfy() attribute
for @Property or
@Parameter

Domain

@Named Override name inferred from
class. Required for parameter
names (prior to Java8).

#named() attribute for
@DomainServiceLayout,
@DomainObjectLayout,
@PropertyLayout,
@CollectionLayout,
@ActionLayout and
@ParameterLayout

UI Yes

9

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic_xml
ugfun.pdf#_ugfun_object-layout_dynamic_xml
ugfun.pdf#_ugfun_object-layout_dynamic_xml
ugfun.pdf#_ugfun_object-layout_dynamic_xml

Annotation Purpose Use instead Layer Dynam
ic
layout?

@NotContributed Indicates that a domain service
action is not rendered as an action
on the (entity) types of its
parameters. For 1-arg query-only
actions, controls whether the
domain service action is rendered
as a property or collection on the
entity type of its parameter.

Use
@DomainService#nature()
to specify whether any of
the actions in a domain
service should appear in
the menu bars (applies at
type level, not action
level). For individual
actions, use
@ActionLayout#
contributedAs() to specify
whether any individual
action should be
contributed only as an
action or as an
association (property or
collection).

UI

@NotInServiceMen
u

Indicates that a domain service
should not be rendered in the
application menu (at top of page in
Wicket viewer).

@DomainService#nature()
to signify that none of the
actions in a domain
service should appear in
the menu bars

UI

@NotPersisted Indicates that an object property is
not persisted (meaning it is
excluded from view model
mementos, and should not be
audited).

#notPersisted() attribute
of @Property and
@Collection

Domain
,
Persiste
nce

@ObjectType For constructing the external
identifier (URI) of an entity
instance (part of its URL in both
Wicket viewer and Restful Objects
viewer). Also part of the toString
representation of bookmarks, if
using the Bookmark Service

@DomainObject#objectType
()

Domain

@Optional Specifies that a property or action
parameter is not mandatory.

#optionality() attribute
for @Property or
@Parameter

Domain

@Paged Number of instances to display in
tables representing (standalone or
parented) collections.

#paged() attribute for
@DomainObjectLayout or
@CollectionLayout

UI Yes

@Plural For the irregular plural form of an
entity type.

@DomainObjectLayout
#plural()

UI

10

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic

Annotation Purpose Use instead Layer Dynam
ic
layout?

@PostsAction
InvokedEvent

Post a domain event to the Event
Bus Service indicating that an
action has been invoked.

@Action#domainEvent() Domain

@PostsCollection
AddedToEvent

Post a domain event to the Event
Bus Service indicating that an
element has been added to a
collection.

@Collection#domainEvent(
)

Domain

@PostsCollection
RemovedFromEvent

Post a domain event to the Event
Bus Service indicating that an
element has been removed from a
collection.

@Collection#domainEvent(
)

Domain

@PostsProperty
ChangedEvent

Post a domain event to the Event
Bus Service indicating that the
value of a property has changed.

@Property#domainEvent() Domain

@PropertyInterac
tion

Enable subscribers on the Event
Bus Service to either veto, validate
or take further steps before/after a
property has been modified or
cleared.

@Property#domainEvent() Domain

@Prototype Indicates that an action should
only be visible in 'prototype' mode.

@Action#restrictTo() UI Yes

@PublishedAction Action invocation should be
serialized and published by
configured PublishingService (if
any), eg to other systems.

@Action#publishing() Domain

@PublishedObject Change to object should be
serialized and published by
configured PublishingService (if
any), eg to other systems.

@DomainObject#publishing
()

Domain

@QueryOnly Whether an action is query-only
(has no side-effects).

@Action#semantics() Domain

@RegEx Validate change to value of string
property.

#regexPattern() for
@Property or @Parameter.

Domain

@Render Eagerly (or lazily) render the
contents of a collection.

@CollectionLayout
#render()

UI Yes

@RenderedAsDayBe
fore

Render dates as the day before; ie
store [a,b) internally but render
[a,b-1]) to end-user.

#renderedAsDayBefore()
attribute for
@PropertyLayout and
@ParameterLayout.

UI

11

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic

Annotation Purpose Use instead Layer Dynam
ic
layout?

@Resolve Eagerly (or lazily) render the
contents of a collection (same as
@Render)

@CollectionLayout
#render()

UI Yes

@SortedBy Display instances in collections in
the order determined by the
provided Comparator.

@CollectionLayout
#sortedBy()

UI Yes

@TypeOf The type of entity stored within a
collection, or as the result of
invoking an action, if cannot be
otherwise inferred, eg from
generics.

#typeOf() attribute for
@Collection and @Action

Domain

@TypicalLength The typical length of a string
property, eg to determine a
sensible length for a textbox.

#typicalLength() attribute
for @PropertyLayout and
@ParameterLayout

UI Yes

2.6. Incomplete/partial support
These annotations have only incomplete/partial support, primarily relating to the management of
value types. We recommend that you do not use them for now. Future versions of Apache Isis may
either formally deprecate/retire them, or we may go the other way and properly support them.
This will depend in part on the interactions between the Apache Isis runtime, its two viewer
implementations, and DataNucleus persistence.

Table 7. Annotations with incomplete/partial support

Annotation Purpose Layer

@Aggregated Indicates that the object is aggregated, or wholly
owned, by a root object.
This information could in theory provide useful
semantics for some object store implementations, eg to
store the aggregated objects "inline".
Currently neither the JDO ObjectStore nor any of the
viewers exploit this metadata.

Domain,
Persistence

12

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic

Annotation Purpose Layer

@Defaulted Indicates that a (value) class has a default value.
The concept of "defaulted" means being able to provide
a default value for the type by way of the
o.a.i.applib.adapters.DefaultsProvider interface.
Generally this only applies to value types, where the
@Value annotation implies encodability through the
ValueSemanticsProvider interface.
For these reasons the @Defaulted annotation is generally
never applied directly, but can be thought of as a
placeholder for future enhancements whereby non-
value types might also have a default value provided
for them.

Domain

@Encodable Indicates that a (value) class can be serialized/encoded.
Encodability means the ability to convert an object to-
and-from a string, by way of the
o.a.i.applib.adapters.EncoderDecoder interface.
Generally this only applies to value types, where the
@Value annotation implies encodability through the
ValueSemanticsProvider interface. For these reasons the
@Encodable annotation is generally never applied
directly, but can be thought of as a placeholder for
future enhancements whereby non-value types might
also be directly encoded. Currently neither the Wicket
viewer nor the RO viewer use this API. The Wicket
viewer uses Wicket APIs, while RO viewer has its own
mechanisms (parsing data from input JSON
representations, etc.)

Persistence

@NotPersistable Indicates that a domain object may not be
programmatically persisted.
+ This annotation indicates that transient instances of
this class may be created but may not be persisted. The
framework will not provide the user with an option to
'save' the object, and attempting to persist such an
object programmatically would be an error. For
example: [source,java] ---- @NotPersistable(By.USER)
public class InputForm { … } ---- By default the
annotated object is effectively transient (ie default to
By.USER_OR_PROGRAM). This annotation is not supported
by: Wicket viewer (which does not support transient
objects). See also ISIS-743 contemplating the removal of
this annotation.

Domain,
Persistence

13

https://issues.apache.org/jira/browse/ISIS-743

Annotation Purpose Layer

@Parseable Indicates that a (value) class can be reconstructed from
a string.
Parseability means being able to parse a string
representation into an object by way of the
o.a.i.applib.adapters.Parser interface. Generally this
only applies to value types, where the @Value
annotation implies encodability through the
ValueSemanticsProvider interface.
For these reasons the @Parser annotation is generally
never applied directly, but can be thought of as a
placeholder for future enhancements whereby non-
value types might also have be able to be parsed.
Note that the Wicket viewer uses Apache Wicket’s
Converter API instead.

UI, Domain

@Value Specify that a class has value-semantics.
The @Value annotation indicates that a class should be
treated as a value type rather than as a reference (or
entity) type. It does this providing an implementation of
a o.a.i.applib.adapters.ValueSemanticsProvider.
For example:
[source,java] ---- @Value(semanticsProviderClass=
ComplexNumberValueSemanticsProvider.class) public
class ComplexNumber { … } ---- The
ValueSemanticsProvider allows the framework to
interact with the value, parsing strings and displaying
as text, and encoding/decoding (for serialization).

Domain

14

Chapter 3. @Action
The @Action annotation groups together all domain-specific metadata for an invokable action on a
domain object or domain service.

The table below summarizes the annotation’s attributes.

Table 8. @Action attributes

Attribute Values (default) Description

command() AS_CONFIGURED, ENABLED,
DISABLED
(AS_CONFIGURED)

whether the action invocation should be reified
into a o.a.i.applib.
services.command.Command object through the
CommandContext service.

commandExecuteIn() FOREGROUND,BACKGROUND
(FOREGROUND)

whether to execute the command immediately,
or to persist it (assuming that an appropriate
implementation of CommandService has been
configured) such that a background scheduler
can execute the command asynchronously

commandPersistence() PERSISTED,
NOT_PERSISTED,
IF_HINTED
(PERSISTED)

whether the reified Command (as provided by the
CommandContext domain service) should actually
be persisted (assuming an appropriate
implementation of CommandService has been
configured).

domainEvent() subtype of
ActionDomainEvent
(ActionDomainEvent.Defa
ult)

the event type to be posted to the
EventBusService to broadcast the action’s
business rule checking (hide, disable, validate)
and its invocation (pre-execute and post-
execute).

hidden() EVERYWHERE, NOWHERE
(NOWHERE)

indicates where (in the UI) the action should be
hidden from the user.

invokeOn() OBJECT_ONLY,
COLLECTION_ONLY,
OBJECT_AND_COLLECTION
(OBJECT_ONLY)

whether an action can be invoked on a single
object and/or on many objects in a collection.
Currently this is only supported for no-arg
actions.

publishing() AS_CONFIGURED, ENABLED,
DISABLED
(AS_CONFIGURED)

whether the action invocation should be
published to the registered PublishingService.

publishing-
PayloadFactory()

subtype of
PublishingPayloadFacto
ry- ForAction (none)

specifies that a custom implementation of
PublishingPayloadFactoryForAction be used to
create the (payload of the) published event
representing the action invocation

restrictTo() NO_RESTRICTIONS,PROTOTY
PING
(NO_RESTRICTIONS)

whether the action is only available in
prototyping mode, or whether it is available also
in production mode.

15

rgsvc.pdf#_rgsvc_api_CommandContext
rgsvc.pdf#_rgsvc_spi_CommandService
rgsvc.pdf#_rgsvc_spi_CommandService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_spi_PublishingService

Attribute Values (default) Description

semantics() SAFE_AND_REQUEST_CACHE
ABLE, SAFE,
IDEMPOTENT,
IDEMPOTENT_ARE_YOU_SUR
E
NON_IDEMPOTENT,
NON_IDEMPOTENT_ARE_YOU
_SURE +
(NON_IDEMPOTENT)

the action’s semantics (ie whether objects are
modified as the result of invoking this action,
and if so whether reinvoking the action would
result in no further change; if not whether the
results can be cached for the remainder of the
request). The …ARE_YOU_SURE variants cause a
confirmation dialog to be displayed in the
Wicket viewer.

typeOf() (none) if the action returns a collection, hints as to the
run-time type of the objects within that
collection (as a fallback)

For example:

public class ToDoItem {
 public static class CompletedEvent extends ActionDomainEvent<ToDoItem> { }
 @Action(
 command=CommandReification.ENABLED,
 commandExecuteIn=CommandExecuteIn.FOREGROUND, ①
 commandPersistence=CommandPersistence.NOT_PERSISTED, ②
 domainEvent=CompletedEvent.class,
 hidden = Where.NOWHERE, ③
 invokeOn = InvokeOn.OBJECT_ONLY, ④
 publishing = Publishing.ENABLED,
 semantics = SemanticsOf.IDEMPOTENT
)
 public ToDoItem completed() { ... }
}

① default value, so could be omitted

② default value, so could be omitted

③ default value, so could be omitted

④ default value, so could be omitted

3.1. command()
The @Action(command=…) attribute (and the related @Action(commandPersistence=…) and
@Action(commandExecuteIn=…) attributes) allows an action invocation to be made into a concrete
object such that it can be inspected and persisted. The primary use case for this is enhanced
profiling/auditing, and it also supports the deferring the execution of the action such that it can be
invoked in the background.

The annotation works with (and is influenced by the behaviour of) a number of domain services:

• CommandContext

16

ugvw.pdf
rgsvc.pdf#_rgsvc_api_CommandContext

• CommandService

• BackgroundService and

• BackgroundCommandService

Each action invocation is reified by the CommandContext service into a Command object, capturing
details of the target object, the action, the parameter arguments, the user, a timestamp and so on.

If an appropriate CommandService is configured (for example using (non-ASF) Isis addons' command
module), then the Command itself is persisted.

By default, actions are invoked in directly in the thread of the invocation. If there is an
implementation of BackgroundCommandService (as the Isis addons' command module does provide),
then this means in turn that the BackgroundService can be used by the domain object code to
programmatically create background Commands.


If background Commands are used, then an external scheduler, using headless
access, must also be configured.

The command() attribute determines whether the action invocation should be reified into a Command
object (by the CommandContext service).

The default is AS_CONFIGURED, meaning that the configuration property
isis.services.command.actions is used to determine the whether the action is reified:

• all

all actions are reified

• ignoreSafe (or ignoreQueryOnly)

actions with safe (read-only) semantics are ignored, but actions which may modify data are not
ignored

• none

no actions are reified.

If there is no configuration property in isis.properties then all actions are reified into Commands.


Note: Command reification does not necessarily imply that Command objects will be
persisted; that depends on whether there is a CommandService configured that will
persist said Commands.

This default can be overridden on an action-by-action basis; if command() is set to ENABLED then the
action is reified irrespective of the configured value; if set to DISABLED then the action is NOT reified
irrespective of the configured value.

For example:

17

rgsvc.pdf#_rgsvc_spi_CommandService
rgsvc.pdf#_rgsvc_spi_BackgroundService
rgsvc.pdf#_rgsvc_spi_BackgroundCommandService
rgsvc.pdf#_rgsvc_api_CommandContext
http://github.com/isisaddons/isis-module-command
http://github.com/isisaddons/isis-module-command
ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution
ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution
rgsvc.pdf#_rgsvc_api_CommandContext
rgcfg.pdf#_rgcfg_configuring-core
rgsvc.pdf#_rgsvc_spi_CommandService

public class Order {
 @Action(command=CommandReification.ENABLED)
 public Invoice generateInvoice(...) { ... }
}

corresponds to the behaviour described above; the Command object is persisted (assuming an
appropriate CommandService is defined, and executed immediately in the foreground).

3.1.1. commandPersistence()

If the action has been reified, then the commandPersistence() attribute determines whether that
Command object should then also be persisted (the default), or not persisted, or only if hinted.

To explain this last alternative:

public class Order {
 @Action(
 command=CommandReification.ENABLED,
 commandPersistence=CommandPersistence.IF_HINTED
)
 public Invoice generateInvoice(...) { ... }
}

will suppress the persistence of the Command object unless a child background Command has been
created in the body of the action by way of the BackgroundService.

On the other hand:

public class Order {
 @Action(
 command=CommandReification.ENABLED,
 commandExecuteIn=CommandExecuteIn.FOREGROUND,
 commandPersistence=CommandPersistence.NOT_PERSISTED
)
 public Invoice generateInvoice(...) { ... }
}

will prevent the parent Command object from being persisted, even if a child background Command is
created.

3.1.2. commandExecuteIn()

For persisted commands, the commandExecuteIn() attribute determines whether the Command should
be executed in the foreground (the default) or executed in the background.

Background execution means that the command is not executed immediately, but is available for a
configured BackgroundCommandService to execute, eg by way of an in-memory scheduler such as

18

rgsvc.pdf#_rgsvc_api_BackgroundService
rgsvc.pdf#_rgsvc_spi_BackgroundCommandService

Quartz. See here for further information on this topic.

For example:

public class Order {
 @Action(
 command=CommandReification.ENABLED,
 commandExecuteIn=CommandExecuteIn.BACKGROUND)
 public Invoice generateInvoice(...) { ... }
}

will result in the Command being persisted but its execution deferred to a background execution
mechanism. The returned object from this action is the persisted Command itself.

3.2. domainEvent()
Whenever a domain object (or list of domain objects) is to be rendered, the framework fires off
multiple domain events for every property, collection and action of the domain object. In the cases
of the domain object’s actions, the events that are fired are:

• hide phase: to check that the action is visible (has not been hidden)

• disable phase: to check that the action is usable (has not been disabled)

• validate phase: to check that the action’s arguments are valid

• pre-execute phase: before the invocation of the action

• post-execute: after the invocation of the action

Subscribers subscribe through the EventBusService using either Guava or Axon Framework
annotations and can influence each of these phases.

By default the event raised is ActionDomainEvent.Default. For example:

public class ToDoItem {
 @Action()
 public ToDoItem completed() { ... }
 ...
}

The domainEvent() attribute allows a custom subclass to be emitted allowing more precise
subscriptions (to those subclasses) to be defined instead. This attribute is also supported for
collections and properties.

For example:

19

ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution
rgsvc.pdf#_rgsvc_api_EventBusService
https://github.com/google/guava
http://www.axonframework.org/

public class ToDoItem {
 public static class CompletedEvent extends ActionDomainEvent<ToDoItem> { } ①
 @Action(domainEvent=CompletedEvent.class)
 public ToDoItem completed() { ... }
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.


As of 1.10.0 the framework provides no-arg constructor and will initialize the
domain event using (non-API) setters rather than through the constructor. This
substantially reduces the boilerplate.

3.2.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ActionDomainEvent ev) {
 ...
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.CompletedEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

The subscriber’s method is called (up to) 5 times:

• whether to veto visibility (hide)

• whether to veto usability (disable)

20

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

• whether to veto execution (validate)

• steps to perform prior to the action being invoked.

• steps to perform after the action has been invoked.

The subscriber can distinguish these by calling ev.getEventPhase(). Thus the general form is:

@Programmatic
@com.google.common.eventbus.Subscribe
public void on(ActionDomainEvent ev) {
 switch(ev.getEventPhase()) {
 case HIDE:
 // call ev.hide() or ev.veto("") to hide the action
 break;
 case DISABLE:
 // call ev.disable("...") or ev.veto("...") to disable the action
 break;
 case VALIDATE:
 // call ev.invalidate("...") or ev.veto("...")
 // if action arguments are invalid
 break;
 case EXECUTING:
 break;
 case EXECUTED:
 break;
 }
}

It is also possible to abort the transaction during the executing or executed phases by throwing an
exception. If the exception is a subtype of RecoverableException then the exception will be rendered
as a user-friendly warning (eg Growl/toast) rather than an error.

3.2.2. Default, Doop and Noop events

If the domainEvent attribute is not explicitly specified (is left as its default value,
ActionDomainEvent.Default), then the framework will, by default, post an event.

If this is not required, then the isis.reflector.facet.actionAnnotation.domainEvent.postForDefault
configuration property can be set to "false"; this will disable posting.

On the other hand, if the domainEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides ActionDomainEvent.Doop as such a subclass, so setting the
domainEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides ActionDomainEvent.Noop; if domainEvent attribute is set
to this class, then no event will be posted.

21

3.2.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically either by calling the EventBusService API directly, or by emulating the UI by
wrapping the target object using the WrapperFactory domain service.

3.3. hidden()
Actions can be hidden at the domain-level, indicating that they are not visible to the end-user. This
attribute can also be applied to properties and collections.



It is also possible to use @ActionLayout#hidden() or dynamic layouts such that the
action can be hidden at the view layer. Both options are provided with a view
that in the future the view-layer semantics may be under the control of (expert)
users, whereas domain-layer semantics should never be overridden or modified
by the user.

For example:

public class Customer {
 @Action(hidden=Where.EVERYWHERE)
 public void updateStatus() { ... }
 ...
}

The acceptable values for the where parameter are:

• Where.EVERYWHERE or Where.ANYWHERE

The action should be hidden at all times.

• Where.NOWHERE

The action should not be hidden.

The other values of the Where enum have no meaning for a collection.


For actions of domain services the visibility is dependent upon its
@DomainService#nature() and also on whether it is contributed (as per
@ActionLayout#contributedAs()).

3.4. invokeOn()
The invokeOn() attribute indicates whether the an action can be invoked on a single object (the
default) and/or on many objects in a collection.

For example:

22

rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_WrapperFactory
ugfun.pdf#_ugfun_object-layout_dynamic

public class ToDoItem {
 @Action(invokeOn=InvokeOn.OBJECT_AND_COLLECTION)
 public void markAsCompleted() {
 setCompleted(true);
 }
 ...
}

Actions to be invoked on collection (currently) have a number of constraints. It:

• must take no arguments

• cannot be hidden (any annotations or supporting methods to that effect will be ignored)

• cannot be disabled (any annotations or supporting methods to that effect will be ignored).

The example given above is probably ok, because setCompleted() is most likely idempotent.
However, if the action also called some other method, then we should add a guard.

For example, for this non-idempotent action:

@Action(invokeOn=InvokeOn.OBJECT_AND_COLLECTION)
public void markAsCompleted() {
 setCompleted(true);
 todoTotalizer.incrementNumberCompleted();
}

we should instead write it as:

@Action(invokeOn=InvokeOn.OBJECT_AND_COLLECTION)
public void markAsCompleted() {
 if(isCompleted()) {
 return;
 }
 setCompleted(true);
 todoTotalizer.incrementNumberCompleted();
}

 This attribute has no meaning if annotated on an action of a domain service.

3.5. publishing()
The publishing() attribute determines whether and how an action invocation is published via the
registered implementation of a PublishingService) or PublisherService. This attribute is also
supported for domain objects, where it controls whether changed objects are published as events,
and for @Property#publishing(), where it controls whether property edits are published as events.

23

rgsvc.pdf#_rgsvc_spi_PublishingService
rgsvc.pdf#_rgsvc_spi_PublisherService

A common use case is to notify external "downstream" systems of changes in the state of the Isis
application. The default value for the attribute is AS_CONFIGURED, meaning that the configuration
property isis.services.publish.actions is used to determine the whether the action is published:

• all

all action invocations are published

• ignoreSafe (or ignoreQueryOnly)

invocations of actions with safe (read-only) semantics are ignored, but actions which may
modify data are not ignored

• none

no action invocations are published

If there is no configuration property in isis.properties then publishing is automatically enabled.

This default can be overridden on an action-by-action basis; if publishing() is set to ENABLED then the
action invocation is published irrespective of the configured value; if set to DISABLED then the action
invocation is not published, again irrespective of the configured value.

For example:

public class Order {
 @Action(publishing=Publishing.ENABLED) ①
 public Invoice generateInvoice(...) { ... }
}

① because set to enabled, will be published irrespective of the configured value.

3.5.1. publishingPayloadFactory()

The (optional) related publishingPayloadFactory() specifies the class to use to create the (payload of
the) event to be published by the publishing factory.

Rather than simply broadcast that the action was invoked, the payload factory allows a "fatter"
payload to be instantiated that can eagerly push commonly-required information to all subscribers.
For at least some subscribers this should avoid the necessity to query back for additional
information.


Be aware that this attribute is only honoured by the (deprecated)
PublishingService, so should itself be considered as deprecated. It is ignored by
the replacement PublisherService,

3.6. restrictTo()
By default actions are available irrespective of the deployment mode. The restrictTo() attribute

24

rgcfg.pdf#_rgcfg_configuring-core
rgcfg.pdf#_rgcfg_configuring-core
rgsvc.pdf#_rgsvc_spi_PublishingService
rgsvc.pdf#_rgsvc_spi_PublisherService
rgcfg.pdf#_rgcfg_deployment-types

specifies whether the action should instead be restricted to only available in prototyping mode.

For example:

public class Customer {
 public Order placeNewOrder() { ... }
 public List<Order> listRecentOrders() { ... }

 @Action(restrictTo=RestrictTo.PROTOTYPING)
 public List<Order> listAllOrders() { ... }
 ...
}

In this case the listing of all orders (in the listAllOrders() action) probably doesn’t make sense for
production; there could be thousands or millions. However, it would be useful to disaply how for a
test or demo system where there are only a handful of orders.

3.7. semantics()
The semantics() attribute describes whether the invocation modifies state of the system, and if so
whether it does so idempotently. If the action invocation does not modify the state of the system, in
other words is safe, then it also can beused to specify whether the results of the action can be
cached automatically for the remainder of the request.

The attribute was originally introduced for the RestfulObjects viewer in order that action
invocations could be using the appropriate HTTP verb (GET, PUT and POST).

The table below summarizes the semantics:

Semantic Changes
state

Effect of multiple calls HTTP verb
(Restful
Objects)

SAFE_AND_REQUEST_CACHEABLE No Will always return the same result each
time invoked (within a given request
scope)

GET

SAFE No Might result in different results each
invocation

GET

IDEMPOTENT
IDEMPOTENT_ARE_YOU_SURE

Yes Will make no further changes if called
multiple times (eg sets a property or adds
to a Set).
The "are you sure" variant requires that
the user must explicitly confirm the
action.

PUT

25

ugvro.pdf

Semantic Changes
state

Effect of multiple calls HTTP verb
(Restful
Objects)

NON_IDEMPOTENT
NON_IDEMPOTENT_ARE_YOU_SUR
E

Yes Might change the state of the system each
time called (eg increments a counter or
adds to a List).
The "are you sure" variant requires that
the user must explicitly confirm the
action.

POST

The actions' semantics are also used by the core runtime as part of the in-built concurrency
checkng; invocation of a safe action (which includes request-cacheable) does not perform a
concurrency check, whereas non-safe actions do perform a concurrency check.

For example:

public class Customer {
 @Action(semantics=SemanticsOf.SAFE_AND_REQUEST_CACHEABLE)
 public CreditRating checkCredit() { ... }

 @Action(semantics=SemanticsOf.IDEMPOTENT)
 public void changeOfAddress(Address address) { ... }

 @Action(semantics=SemanticsOf.NON_IDEMPOTENT)
 public Order placeNewOrder() { ... }
 ...
}

Actions that are safe and request-cacheable automatically use the QueryResultsCache service to
cache the result of the method. Note though that the results of this caching will only be apparent if
the action is invoked from another method using the WrapperFactory service.

Continuing the example above, imagine code that loops over a set of Orders where each Order has an
associated Customer. We want to check the credit rating of each Customer (a potentially expensive
operation) but we don’t want to do it more than once per Customer. Invoking through the
WrapperFactory will allow us to accomplish this by exploiting the semantics of checkCredit() action:

26

rgsvc.pdf#_rgsvc_api_QueryResultsCache
rgsvc.pdf#_rgsvc_api_WrapperFactory

public void dispatchToCreditWorthyCustomers(final List<Order> orders) {
 for(Order order: orders) {
 Customer customer = order.getCustomer();
 CreditRating creditRating = wrapperFactory.wrapSkipRules(customer).
checkCredit(); ①
 if(creditRating.isWorthy()) {
 order.dispatch();
 }
 }
}
@Inject
WrapperFactory wrapperFactory;

① wrap the customer to dispatch.

In the above example we’ve used wrapSkipRules(…) but if we wanted to enforce any business rules
associated with the checkCredit() method, we would have used wrap(…).

3.8. typeOf()
The typeOf() attribute specifies the expected type of an element returned by the action (returning a
collection), when for whatever reason the type cannot be inferred from the generic type, or to
provide a hint about the actual run-time (as opposed to compile-time) type. This attribute can also
be specified for collections.

For example:

public void AccountService {
 @Action(typeOf=Customer.class)
 public List errantAccounts() {
 return customers.allNewCustomers();
 }
 ...

 @Inject
 CustomerRepository customers;
}

 In general we recommend that you use generics instead, eg List<Customer>.

27

Chapter 4. @ActionLayout
The @ActionLayout annotation applies to actions, collecting together all UI hints within a single
annotation.

The table below summarizes the annotation’s attributes.

Table 9. @ActionLayout attributes

Attribute Values (default) Description

bookmarking() AS_ROOT, NEVER
(NEVER)

indicates if an action (with safe action
semantics) is automatically bookmarked.

contributedAs() AS_BOTH, AS_ACTION,
AS_ASSOCIATION,
AS_NEITHER
(AS_BOTH)

for a domain service action that can be
contributed, whether to contribute as an action
or as an association (ie a property or collection).
For a domain service action to be contributed,
the domain services must have a nature nature
of either VIEW or VIEW_CONTRIBUTIONS_ONLY, and
the action must have safe action semantics, and
takes a single argument, namely the contributee
domain object.

cssClass() Any string valid as a
CSS class

an additional CSS class around the HTML that
represents for the action, to allow targetted
styling in application.css.
Supported by the Wicket viewer but currently
ignored by the RestfulObjects viewer.

cssClassFa() Any valid Font
awesome icon name

specify a font awesome icon for the action’s
menu link or icon.

cssClassFaPosition() LEFT, RIGHT
(LEFT)

Positioning of the icon on the button/menu item.

describedAs() String. provides a short description of the action, eg for
rendering as a 'tool tip'.

hidden() EVERYWHERE, NOWHERE
(NOWHERE)

indicates where (in the UI) the action should be
hidden from the user.

named() String. to override the name inferred from the action’s
name in code.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

position() BELOW, RIGHT, PANEL,
PANEL_DROPDOWN (BELOW)

for actions associated (using
@MemberOrder#named()) with properties, the
positioning of the action’s button with respect to
the property

For example:

28

rgcfg.pdf#_rgcfg_application-specific_application-css
ugvw.pdf
ugvro.pdf
http://fortawesome.github.io/Font-Awesome/
http://fortawesome.github.io/Font-Awesome/

public class ToDoItems {
 @Action(semantics=SemanticsOf.SAFE) ①
 @ActionLayout(
 bookmarking=BookmarkPolicy.AS_ROOT,
 cssClass="x-key",
 cssClassFa="fa-checkbox",
 describedAs="Mark the todo item as not complete after all",
 hidden=Where.NOWHERE ②
)
 @MemberOrder(sequence = "1")
 public List<ToDoItem> notYetComplete() {
 ...
 }
}

① required for bookmarkable actions

② default value, so could be omitted

As an alternative to using the @ActionLayout annotation, a dynamic layout using .layout.json file
can be specified; for example:

"notYetComplete": {
 "actionLayout": {
 "bookmarking": "AS_ROOT",
 "cssClass": "x-key",
 "cssClassFa": "fa-checkbox",
 "describedAs": "Mark the todo item as not complete after all",
 "hidden": "NOWHERE"
 }
}

4.1. bookmarking()
The bookmarking() attribute indicates if an action (with safe action semantics) is automatically
bookmarked. This attribute is also supported for domain objects.

In the Wicket viewer, a link to a bookmarked object is shown in the bookmarks panel:

29

ugfun.pdf#_ugfun_object-layout_dynamic
ugvw.pdf


Note that this screenshot shows an earlier version of the Wicket viewer UI
(specifically, pre 1.8.0).


The Wicket viewer supports alt-[as a shortcut for opening the bookmark panel.
Esc will close.

For example:

public class ToDoItems {
 @Action(semantics=SemanticsOf.SAFE)
 @ActionLayout(bookmarking=BookmarkPolicy.AS_ROOT)
 @MemberOrder(sequence = "1")
 public List<ToDoItem> notYetComplete() {
 ...
 }
}

indicates that the notYetComplete() action is bookmarkable.


The enum value AS_CHILD has no meaning for actions; it relates only to
bookmarked domain objects.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

30

images/reference-annotations/ActionLayout/bookmarking.png
ugvw.pdf
ugvw.pdf
ugfun.pdf#_ugfun_object-layout_dynamic

"notYetComplete": {
 "actionLayout": { "bookmarking": "AS_ROOT" }
}

4.2. contributedAs()
For a domain service action that can be contributed, the contributedAs() attribute determines how
it is contributed: as an action or as an association (ie a property or collection).

The distinction between property or collection is automatic: if the action returns a
java.util.Collection (or subtype) then the action is contributed as a collection; otherwise it is
contributed as a property.

For a domain service action to be contributed, the domain services must have a nature nature of
either VIEW or VIEW_CONTRIBUTIONS_ONLY, and the action must have safe action semantics, and takes a
single argument, namely the contributee domain object.

For example:

@DomainService(nature=NatureOfService.VIEW_CONTRIBUTIONS_ONLY)
public class CustomerContributions {
 @Action(semantics=SemanticsOf.SAFE)
 @ActionLayout(contributedAs=Contributed.AS_ASSOCIATION)
 public List<Order> mostRecentOrders(Customer customer) { ... }
 ...
}


The @ActionLayout is not required if the action does not have safe semantics, or if
the action takes more than one argument; in these cases the action can only be
contributed as an action.

It’s also possible to use the attribute to suppress the action completely:

@DomainService(nature=NatureOfService.VIEW)
public class OrderContributions {
 @ActionLayout(contributedAs=Contributed.AS_NEITHER)
 public void cancel(Order order);
 ...
}

In such cases, though, it would probably make more sense to annotate the action as either hidden
or indeed @Programmatic.

31


Unlike other @ActionLayout attributes, this attribute cannot be specified
dynamically in the .layout.json dynamic layout file because it relates to the
contributor domain service, not the contributee domain object.

4.3. cssClass()
The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the action. Application-specific CSS can then be used to target and adjust the
UI representation of that particular element.

This attribute can also be applied to domain objects, view models, properties, collections and
parameters.

For example:

public class ToDoItem {
 @ActionLayout(cssClass="x-key")
 public ToDoItem postpone(LocalDate until) { ... }
 ...
}


The similar @ActionLayout#cssClassFa() annotation attribute is also used as a hint
to apply CSS, specifically to add Font Awesome icons on action menu items or
buttons.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"postpone": {
 "actionLayout": { "cssClass": "x-key" }
}

4.4. cssClassFa()
The cssClassFa() attribute is used to specify the name of a Font Awesome icon name, to be
rendered on the action’s representation as a button or menu item. The related
cssClassFaPosition() attribute specifies the positioning of the icon, to the left or the right of the text.

These attributes can also be applied to domain objects and to view models to specify the object’s
icon.

For example:

32

ugfun.pdf#_ugfun_object-layout_dynamic
rgcfg.pdf#_rgcfg_application-specific_application-css
http://fortawesome.github.io/Font-Awesome/icons/
ugfun.pdf#_ugfun_object-layout_dynamic
http://fortawesome.github.io/Font-Awesome/icons/

public class ToDoItem {
 @ActionLayout(
 cssClassFa="fa-step-backward"
)
 public ToDoItem previous() { ... }

 @ActionLayout(
 cssClassFa="fa-step-forward",
 cssClassFaPosition=ActionLayout.CssClassFaPosition.RIGHT
)
 public ToDoItem next() { ... }
}

There can be multiple "fa-" classes, eg to mirror or rotate the icon. There is no need to include the
mandatory fa "marker" CSS class; it will be automatically added to the list. The fa- prefix can also
be omitted from the class names; it will be prepended to each if required.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"previous": {
 "actionLayout": {
 "cssClassFa": "fa-step-backward",
 "cssClassFaPosition": "LEFT"
 }
},
"next": {
 "actionLayout": {
 "cssClassFa": "fa-step-forward",
 "cssClassFaPosition": "RIGHT"
 }
}


The similar @ActionLayout#cssClass() annotation attribute is also used as a hint to
apply CSS, but for wrapping the representation of an object or object member so
that it can be styled in an application-specific way.

4.5. describedAs()
The describedAs() attribute is used to provide a short description of the action to the user. In the
Wicket viewer it is displayed as a 'tool tip'.

This attribute can also be specified for collections, properties, parameters, domain objects and
view models.

For example:

33

ugfun.pdf#_ugfun_object-layout_dynamic
ugvw.pdf

public class Customer {
 @ActionLayout(describedAs="Place a repeat order of the last (most recently placed)
order")
 public Order placeRepeatOrder(...) { ... }
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"postpone": {
 "actionLayout": { "describedAs": "Place a repeat order of the last (most recently
placed) order" }
}

4.6. hidden()
The hidden() attribute indicates where (in the UI) the action should be hidden from the user. This
attribute can also be applied to properties and collections.


It is also possible to use @Action#hidden() to hide an action at the domain layer.
Both options are provided with a view that in the future the view-layer semantics
may be under the control of (expert) users, whereas domain-layer semantics
should never be overridden or modified by the user.

For example:

public class Customer {
 @ActionLayout(hidden=Where.EVERYWHERE)
 public void updateStatus() { ... }
 ...
}

The acceptable values for the where parameter are:

• Where.EVERYWHERE or Where.ANYWHERE

The action should be hidden at all times.

• Where.NOWHERE

The action should not be hidden.

The other values of the Where enum have no meaning for a collection.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

34

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_object-layout_dynamic

"updateStatus": {
 "actionLayout": { "hidden": "EVERYWHERE" }
}


For actions of domain services the visibility is dependent upon its
@DomainService#nature() and also on whether it is contributed (as per
@ActionLayout#contributedAs()).

4.7. named()
The named() attribute explicitly specifies the action’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for collections,
properties, parameters, domain objects, view models and domain services.


Following the don’t repeat yourself principle, we recommend that you only use
this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

For example:

public class Customer {
 @ActionLayout(named="Get credit rating")
 public CreditRating obtainCreditRating() { ... }
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"obtainCreditRating": {
 "actionLayout": { "named": "Get credit rating" }
}


The framework also provides a separate, powerful mechanism for
internationalization.

4.8. position()
The position() attribute pertains only to actions that have been associated with properties using
@MemberOrder#named(). For these actions, it specifies the positioning of the action’s button with
respect to the field representing the object property.

The attribute can take one of four values: BELOW, RIGHT, PANEL or PANEL_DROPDOWN.

For example:

35

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
ugfun.pdf#_ugfun_object-layout_dynamic
ugbtb.pdf#_ugbtb_i18n

public class Customer {

 @Property(
 editing=Editing.DISABLED ①
)
 public CustomerStatus getStatus() { ... }
 public void setStatus(CustomerStatus customerStatus) { ... }

 @MemberOrder(
 named="status", ②
 sequence="1"
)
 @ActionLayout(
 named="Update", ③
 position=Position.BELOW
)
 public CreditRating updateStatus(Customer) { ... }
}

① indicate the property as read-only, such that it can only be updated using an action

② associate the "updateStatus" action with the "status" property

③ give the action an abbreviated name, because the fact that the "status" property is to be updated
is implied by its positioning

The default is BELOW, which is rendered (by the Wicket viewer) as shown below:

If the action is positioned as RIGHT, then the action’s button is rendered to the right of the property’s
field, in a compact drop-down. This is ideal if there are many actions associated with a property:

If the action is positioned as PANEL, then the action’s button is rendered on the header of the panel
that contains the property:

36

ugvw.pdf
images/reference-annotations/ActionLayout/position-BELOW.png
images/reference-annotations/ActionLayout/position-RIGHT.png

And finally, if the action is positioned as PANEL_DROPDOWN, then the action’s button is again rendered
on the panel header, but as a drop-down:

If there are multiple actions associated with a single property then the positioning can be mix’ed-
and-match’ed as required. If the PANEL or PANEL_DROPDOWN are used, then (as the screenshots above
show) the actions from potentially multiple properties grouped by that panel will be shown
together.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"obtainCreditRating": {
 "actionLayout": { "named": "Get credit rating" }
}

The fact that the layout is dynamic (does not require a rebuild/restart) is particularly useful in that
the look-n-feel can be easily experimented with and adjusted.

37

images/reference-annotations/ActionLayout/position-PANEL.png
images/reference-annotations/ActionLayout/position-PANEL_DROPDOWN.png
ugfun.pdf#_ugfun_object-layout_dynamic

Chapter 5. @Collection
The @Collection annotation applies to collections collecting together all domain semantics within a
single annotation.

The table below summarizes the annotation’s attributes.

Table 10. @Collection attributes

Attribute Values (default) Description

domainEvent() subtype of
CollectionDomainEvent
(CollectionDomainEvent.
Default)

the event type to be posted to the
EventBusService to broadcast the collection’s
business rule checking (hide, disable, validate)
and its modification (before and after).

editing() ENABLED, DISABLED,
AS_CONFIGURED
(AS_CONFIGURED)

whether a collection can be added to or
removed from within the UI

editingDisabledReason(
)

String value if editing() is DISABLED, provides a reason as to
why.

hidden() EVERYWHERE,
OBJECT_FORMS, NOWHERE
(NOWHERE)

indicates where (in the UI) the collection should
be hidden from the user.

notPersisted() true, false
(false)

whether to exclude from snapshots.
[WARNING] ==== Collection must also be
annotated with
@javax.jdo.annotations.NotPersistent in order
to not be persisted. ====

typeOf() hints as to the run-time type of the objects
within that collection (as a fallback)

For example:

public class ToDoItem {
 public static class DependenciesChangedEvent
 extends CollectionDomainEvent<ToDoItem, ToDoItem> { } ①
 @Collection(
 domainEvent=DependenciesChangedEvent.class,
 editing = Editing.ENABLED,
 hidden = Where.NOWHERE, ②
 notPersisted = false, ③
 typeOf = ToDoItem.class ④
)
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

① as of 1.10.0, can use no-arg constructor.

38

rgsvc.pdf#_rgsvc_api_EventBusService

② default value, so could be omitted

③ default value, so could be omitted

④ default value, so could be omitted


The annotation is one of a handful (others including @CollectionLayout, @Property
and @PropertyLayout) that can also be applied to the field, rather than the getter
method. This is specifically so that boilerplate-busting tools such as Project
Lombok can be used.

5.1. domainEvent()
Whenever a domain object (or list of domain objects) is to be rendered, the framework fires off
multiple domain events for every property, collection and action of the domain object. In the cases
of the domain object’s collections, the events that are fired are:

• hide phase: to check that the collection is visible (has not been hidden)

• disable phase: to check that the collection is usable (has not been disabled)

• validate phase: to check that the collection’s arguments are valid (to add or remove an element)

• pre-execute phase: before the modification of the collection

• post-execute: after the modification of the collection

Subscribers subscribe through the EventBusService using either Guava or Axon Framework
annotations and can influence each of these phases.



The Wicket viewer does not currently support the modification of collections;
they are rendered read-only. However, domain events are still relevant to
determine if such collections should be hidden.

The workaround is to create add/remove actions and use UI hints to render them
close to the collection.

By default the event raised is CollectionDomainEvent.Default. For example:

public class ToDoItem {
 @Collection()
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

The domainEvent() attribute allows a custom subclass to be emitted allowing more precise
subscriptions (to those subclasses) to be defined instead. This attribute is also supported for actions
and properties.

For example:

39

https://projectlombok.org/
https://projectlombok.org/
rgsvc.pdf#_rgsvc_api_EventBusService
https://github.com/google/guava
http://www.axonframework.org/
ugvw.pdf

public class ToDoItem {
 public static class DependenciesChangedEvent
 extends CollectionDomainEvent<ToDoItem, ToDoItem> { } ①
 @Collection(
 domainEvent=DependenciesChangedEvent.class
)
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

① inherit from CollectionDomainEvent<T,E> where T is the type of the domain object being
interacted with, and E is the type of the element in the collection (both ToDoItem in this example)

The benefit is that subscribers can be more targetted as to the events that they subscribe to.


As of 1.10.0 the framework provides no-arg constructor and will initialize the
domain event using (non-API) setters rather than through the constructor. This
substantially reduces the boilerplate.

5.1.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(CollectionDomainEvent ev) {
 ...
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.DependenciesChangedEvent ev) {
 ...
 }
}

40

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

The subscriber’s method is called (up to) 5 times:

• whether to veto visibility (hide)

• whether to veto usability (disable)

• whether to veto execution (validate) the element being added to/removed from the collection

• steps to perform prior to the collection being added to/removed from

• steps to perform after the collection has been added to/removed from.

The subscriber can distinguish these by calling ev.getEventPhase(). Thus the general form is:

@Programmatic
@com.google.common.eventbus.Subscribe
public void on(CollectionDomainEvent ev) {
 switch(ev.getEventPhase()) {
 case HIDE:
 // call ev.hide() or ev.veto("") to hide the collection
 break;
 case DISABLE:
 // call ev.disable("...") or ev.veto("...") to disable the collection
 break;
 case VALIDATE:
 // call ev.invalidate("...") or ev.veto("...")
 // if object being added/removed to collection is invalid
 break;
 case EXECUTING:
 break;
 case EXECUTED:
 break;
 }
}

It is also possible to abort the transaction during the executing or executed phases by throwing an
exception. If the exception is a subtype of RecoverableException then the exception will be rendered
as a user-friendly warning (eg Growl/toast) rather than an error.

5.1.2. Default, Doop and Noop events

If the domainEvent attribute is not explicitly specified (is left as its default value,
CollectionDomainEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.collectionAnnotation.domainEvent.postForDefault configuration collection
can be set to "false"; this will disable posting.

41

On the other hand, if the domainEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides CollectionDomainEvent.Doop as such a subclass, so setting
the domainEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration collection setting.

And, conversely, the framework also provides CollectionDomainEvent.Noop; if domainEvent attribute is
set to this class, then no event will be posted.

5.1.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically either by calling the EventBusService API directly, or by emulating the UI by
wrapping the target object using the WrapperFactory domain service.

5.2. editing()
The editing() annotation indicates whether a collection can be added to or removed from within
the UI. This attribute can also be specified for properties, and can also be specified for the domain
object

The related editingDisabledReason() attribute specifies the a hard-coded reason why the collection
cannot be modified directly.



The Wicket viewer does not currently support the modification of collections;
they are rendered read-only.

The workaround is to create add/remove actions and use UI hints to render them
close to the collection.

Whether a collection is enabled or disabled depends upon these factors:

• whether the domain object has been configured as immutable through the
@DomainObject#editing() attribute

• else (that is, if the domain object’s editability is specified as being AS_CONFIGURED), then the value
of the configuration property isis.objects.editing. If set to false, then the object’s collections
(and properties) are not editable

• else, then the value of the @Collection(editing=…) attribute itself.

• else, the result of invoking any supporting disable…() supporting methods

Thus, to make a collection read-only even if the object would otherwise be editable, use:

42

rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_WrapperFactory
ugvw.pdf
rgcfg.pdf#_rgcfg_configuring-core
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable

public class ToDoItem {
 @Collection(
 editing=Editing.DISABLED,
 editingDisabledReason="Use the add and remove actions to modify"
)
 public SortedSet<ToDoItem> getDependencies() { ... }
}


To reiterate, it is not possible to enable editing for a collection if editing has been
disabled at the object-level.

5.3. hidden()
Collections can be hidden at the domain-level, indicating that they are not visible to the end-user.
This attribute can also be applied to actions and properties.



It is also possible to use @CollectionLayout#hidden() or dynamic layouts such that
the collection can be hidden at the view layer. Both options are provided with a
view that in the future the view-layer semantics may be under the control of
(expert) users, whereas domain-layer semantics should never be overridden or
modified by the user.

For example:

public class Customer {
 @Collection(where=Where.EVERYWHERE)
 public SortedSet<Address> getAddresses() { ... }
}

The acceptable values for the where parameter are:

• Where.EVERYWHERE or Where.ANYWHERE

The collection should be hidden everywhere.

• Where.ANYWHERE

Synonym for everywhere.

• Where.OBJECT_FORMS

The collection should be hidden when displayed within an object form.

• Where.NOWHERE

The collection should not be hidden.

43

ugfun.pdf#_ugfun_object-layout_dynamic

The other values of the Where enum have no meaning for a collection.


The Wicket viewer suppresses collections when displaying lists of objects.

The RestfulObjects viewer by default suppress collections when rendering a
domain object.

5.4. notPersisted()
The (somewhat misnamed) notPersisted() attribute indicates that the collection should be excluded
from any snapshots generated by the XmlSnapshotService. This attribute is also supported for
properties.


This annotation does not specify that a collection is not persisted in the
JDO/DataNucleus objectstore. See below for details as to how to additionally
annotate the collection for this.

For example:

public class Customer {
 @Collection(notPersisted=true)
 public SortedSet<Order> getPreviousOrders() {...}
 public void setPreviousOrder(SortedSet<Order> previousOrders) {...}
 ...
}

Historically this annotation also hinted as to whether the collection’s contents should be persisted
in the object store. However, the JDO/DataNucleus objectstore does not recognize this annotation.
Thus, to ensure that a collection is actually not persisted, it should also be annotated with
@javax.jdo.annotations.NotPersistent.

For example:

public class Customer {
 @Collection(notPersisted=true) ①
 @javax.jdo.annotations.NotPersistent ②
 public SortedSet<Order> getPreviousOrders() {...}
 public void setPreviousOrder(SortedSet<Order> previousOrders) {...}
 ...
}

① ignored by Apache Isis

② ignored by JDO/DataNucleus

Alternatively, if the collection is derived, then providing only a "getter" will also work:

44

ugvw.pdf
ugvro.pdf
rgsvc.pdf#_rgsvc_api_XmlSnapshotService

public class Customer {
 public SortedSet<Order> getPreviousOrders() {...}
 ...
}

5.5. typeOf()
The typeOf() attribute specifies the expected type of an element contained within a collection when
for whatever reason the type cannot be inferred from the generic type, or to provide a hint about
the actual run-time (as opposed to compile-time) type. This attribute can also be specified for
actions.

For example:

public void Customer {
 @TypeOf(Order.class)
 public SortedSet getOutstandingOrders() { ... }
 ...
}

 In general we recommend that you use generics instead, eg SortedSet<Order>.

45

Chapter 6. @CollectionLayout
The @CollectionLayout annotation applies to collections, collecting together all UI hints within a
single annotation. It is also possible to apply the annotation to actions of domain services that are
acting as contributed collections.

The table below summarizes the annotation’s attributes.

Table 11. @CollectionLayout attributes

Attribute Values (default) Description

cssClass() Any string valid as a
CSS class

the css class that a collection should have, to
allow more targetted styling in application.css

defaultView() table, excel, calendar,
map, …

Which view is selected by default, if multiple
views are available. See (non-ASF) Isis Addons
for further views.

describedAs() String. description of this collection, eg to be rendered
in a tooltip.

hidden() EVERYWHERE,
OBJECT_FORMS, NOWHERE
(NOWHERE)

indicates where (in the UI) the collection should
be hidden from the user.

named() String. to override the name inferred from the
collection’s name in code.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

namedEscaped() true,false (true) whether to HTML escape the name of this
property.

paged() Positive integer the page size for instances of this class when
rendered within a table.

render() EAGERLY, LAZILY
(LAZILY)

whether the collection should be (eagerly)
rendered open or (lazily) rendered closed

sortedBy() Subclass of
java.util.Comparator
for element type

indicates that the elements in the
java.util.SortedSet collection should be sorted
according to a specified Comparator rather than
their natural sort order.

For example:

46

rgcfg.pdf#_rgcfg_application-specific_application-css
http://isisaddons.org

public class ToDoItem {
 @CollectionLayout(
 cssClass="x-key",
 named="Todo items that are <i>dependencies</i> of this item.",
 namedEscaped=false,
 describedAs="Other todo items that must be completed before this one",
 labelPosition=LabelPosition.LEFT,
 render=EAGERLY)
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

As an alternative to using the @CollectionLayout annotation, a dynamic layout using .layout.json
file can be specified; for example:

"dependencies": {
 "collectionLayout": {
 "cssClass": "x-key",
 "named": "Todo items that are <i>dependencies</i> of this item.",
 "namedEscaped": false,
 "describedAs": "Other todo items that must be completed before this one",
 "labelPosition": "LEFT",
 "render": "EAGERLY"
 }
}


The annotation is one of a handful (others including @Collection, @Property and
@PropertyLayout) that can also be applied to the field, rather than the getter
method. This is specifically so that boilerplate-busting tools such as Project
Lombok can be used.

6.1. cssClass()
The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the collection. Application-specific CSS can then be used to target and adjust
the UI representation of that particular element.

This attribute can also be applied to domain objects, view models, actions, properties and
parameters.

For example:

47

ugfun.pdf#_ugfun_object-layout_dynamic
https://projectlombok.org/
https://projectlombok.org/
rgcfg.pdf#_rgcfg_application-specific_application-css

public class ToDoItem {
 @CollectionLayout(
 cssClass="x-important"
)
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"dependencies": {
 "collectionLayout": { "cssClass": "x-important" }
}

6.2. defaultView()
The Wicket viewer allows additional views to be configured to render collections of objects; at the
time of writing thesee include the (non-ASF) (non-ASF) Isis Addons' (non-ASF) excel view, the
fullcalendar2 view, and the gmap3 view. If the objects to be rendered have the correct "shape",
then the appropriate view will be made available. For example, objects with a date can be
rendered using calendar; objects with locations can be rendered using map.

The defaultView() attribute is used to select which of these views should be used by default for a
given collection.

For example:

public class BusRoute {
 @CollectionLayout(
 defaultView="map"
)
 public SortedSet<BusStop> getStops() { ... }
 ...
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"dependencies": {
 "collectionLayout": {
 "defaultView": "map"
 }
}

48

ugfun.pdf#_ugfun_object-layout_dynamic
ugvw.pdf
http://isisaddons.org
http://github.com/isisaddons/isis-wicket-excel
http://github.com/isisaddons/isis-wicket-fullcalendar2
http://github.com/isisaddons/isis-wicket-gmap3
ugfun.pdf#_ugfun_object-layout_dynamic


This attribute takes precedence over any value for the @CollectionLayout#render()
attribute. For example, if the defaultView attribute is defined to "table", then the
table will be show even if render is set to LAZILY.

6.3. describedAs()
The describedAs() attribute is used to provide a short description of the collection to the user. In
the Wicket viewer it is displayed as a 'tool tip'.

The describedAs() attribute can also be specified for properties, actions, parameters, domain
objects and view models.

For example:

public class ToDoItem {
 @CollectionLayout(
 describedAs="Other todo items that must be completed before this one"
)
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"dependencies": {
 "collectionLayout": {
 "describedAs": "Other todo items that must be completed before this one"
 }
}

6.4. hidden()
The hidden() attribute indicates where (in the UI) the collection should be hidden from the user.
This attribute can also be applied to actions and properties.


It is also possible to use @Collection#hidden() to hide an action at the domain
layer. Both options are provided with a view that in the future the view-layer
semantics may be under the control of (expert) users, whereas domain-layer
semantics should never be overridden or modified by the user.

For example:

49

ugvw.pdf
ugfun.pdf#_ugfun_object-layout_dynamic

public class ToDoItem {
 @CollectionLayout(
 hidden=Where.EVERYWHERE
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

The acceptable values for the where parameter are:

• Where.EVERYWHERE or Where.ANYWHERE

The collection should be hidden everywhere.

• Where.ANYWHERE

Synonym for everywhere.

• Where.OBJECT_FORMS

The collection should be hidden when displayed within an object form.

• Where.NOWHERE

The collection should not be hidden.

The other values of the Where enum have no meaning for a collection.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"dependencies": {
 "collectionLayout": { "hidden": "EVERYWHERE" }
}

6.5. named()
The named() attribute explicitly specifies the collection’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for actions,
properties, parameters, domain objects, view models and domain services.


Following the don’t repeat yourself principle, we recommend that you only use
this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

By default the name is HTML escaped. To allow HTML markup, set the related namedEscaped()
attribute to false.

For example:

50

ugfun.pdf#_ugfun_object-layout_dynamic
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

public class ToDoItem {
 @CollectionLayout(
 named="Todo items that are <i>dependencies</i> of this item",
 namedEscaped=false
)
 public SortedSet<ToDoItem getDependencies() { ... }
 ...
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"dependencies": {
 "collectionLayout": {
 "named": "Todo items that are <i>dependencies</i> of this item",
 "namedEscaped": false,
 }
}


The framework also provides a separate, powerful mechanism for
internationalization.

6.6. paged()
The paged() attribute specifies the number of rows to display in a (parented) collection. This
attribute can also be applied to domain objects and view models.



The RestfulObjects viewer currently does not support paging. The Wicket viewer
does support paging, but note that the paging is performed client-side rather than
server-side.

We therefore recommend that large collections should instead be modelled as
actions (to allow filtering to be applied to limit the number of rows).

For example:

public class Order {
 @CollectionLayout(paged=15)
 public SortedSet<OrderLine> getDetails() {...}
}

It is also possible to specify a global default for the page size of standalone collections, using the
configuration property isis.viewer.paged.parented.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

51

ugfun.pdf#_ugfun_object-layout_dynamic
ugbtb.pdf#_ugbtb_i18n
ugvro.pdf
ugvw.pdf
rgcfg.pdf#_rgcfg_configuring-core
ugfun.pdf#_ugfun_object-layout_dynamic

"details": {
 "collectionLayout": {
 "paged": 15
 }
}

6.7. render()
The render() attribute specifies that the collection be rendered either "eagerly" (shown open,
displaying its contents) or "lazily" (shown closed, hiding its contents). The terminology here is based
on the similar concept of lazy loading of collections in the domain/persistence layer boundary
(except that the rendering relates to the presentation/domain layer boundary).

For example:

public class Order {
 @CollectionLayout(render=RenderType.EAGERLY)
 public SortedSet<LineItem> getDetails() { ... }
 ...
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"details": {
 "collectionLayout": {
 "render": "EAGERLY"
 }
}



Note that contributed collections (which, under the covers are just action
invocations against a domain service) are always rendered eagerly.

Also, if a @CollectionLayout#defaultView() attribute has been specified then that
will take precedence over the value of the render() attribute.

6.8. sortedBy()
The sortedBy() attribute specifies that the collection be ordered using the specified comparator,
rather than the natural ordering of the entity (as would usually be the case).

For example:

52

ugfun.pdf#_ugfun_object-layout_dynamic
ugfun.pdf#_ugfun_how-tos_contributed-members

public class ToDoItem implements Comparable<ToDoItem> { ①
 public static class DependenciesComparator ②
 implements Comparator<ToDoItem> {
 @Override
 public int compare(ToDoItem p, ToDoItem q) {
 return ORDERING_BY_DESCRIPTION ③
 .compound(Ordering.<ToDoItem>natural())
 .compare(p, q);
 }
 }
 @CollectionLayout(sortedBy=DependenciesComparator.class) ④
 public SortedSet<ToDoItem> getDependencies() { ... }
 ...
}

① the class has a natural ordering (implementation not shown)

② declaration of the comparator class

③ ordering defined as being by the object’s description property (not shown), and then by the
natural ordering of the class

④ specify the comparator to use

When the dependencies collection is rendered, the elements are sorted by the description property
first:


Note that this screenshot shows an earlier version of the Wicket viewer UI
(specifically, pre 1.8.0).

Without this annotation, the order would have been inverted (because the natural ordering places
items not completed before those items that have been completed.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

53

images/reference-annotations/CollectionLayout/sortedby-dependencies.png
ugvw.pdf
ugfun.pdf#_ugfun_object-layout_dynamic

"dependencies": {
 "collectionLayout": {
 "sortedBy": "com.mycompany.myapp.dom.ToDoItem.DependenciesComparator"
 }
}

54

Chapter 7. @Column (javax.jdo)
The JDO @javax.jdo.annotation.Column provides metadata describing how JDO/DataNucleus should
persist the property to a database RDBMS table column (or equivalent concept for other persistence
stores).

Apache Isis also parses and interprets this annotation in order to build up aspects of its metamodel.



Isis parses the @Column annotation from the Java source code; it does not query the
JDO metamodel. This means that it the @Column annotation must be used rather
than the equivalent <column> XML metadata.

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

This section identifies which attributes of @Column are recognized and used by Apache Isis.

7.1. Nullability
The allowsNull() attribute is used to specify if a property is mandatory or is optional.

For example:

public class Customer {
 @javax.jdo.annotations.Column(allowNulls="true")
 public String getMiddleInitial() { ... }
 public void setMiddleInitial(String middleInitial) { ... }

Isis also provides @Property#optionality() attribute. If both are specified, Apache Isis will check
when it initializes for any contradictions, and will fail-fast with an appropriate error message in the
log if there are.

You should also be aware that in the lack of either the @Column#allowsNull() or the
@Property#optionality() attributes, that the JDO and Apache Isis defaults differ. Apache Isis rule is
straight-forward: properties are assumed to be required. JDO on the other hand specifies that only
primitive types are mandatory; everything else is assumed to be optional. Therefore a lack of
either annotation can also trigger the fail-fast validation check.

In the vast majority of cases you should be fine just to add the @Column#allowsNull() attribute to the
getter. But see the documentation for @Property#optionality() attribute for discussion on one or
two minor edge cases.

7.2. Length for Strings
The length() attribute is used to specify the length of java.lang.String property types as they map
to varchar(n) columns.

55

http://www.datanucleus.org/products/accessplatform_4_0/jdo/orm/schema_mapping.html

For example:

public class Customer {
 @javax.jdo.annotations.Column(length=20)
 public String getFirstName() { ... }
 public void setFirstName(String firstName) { ... }
 @javax.jdo.annotations.Column(allowNulls="true", length=1)
 public String getMiddleInitial() { ... }
 public void setMiddleInitial(String middleInitial) { ... }
 @javax.jdo.annotations.Column(length=30)
 public String getLastName() { ... }
 public void setLastName(String lastName) { ... }

Isis also provides @Property#maxLength() attribute. If both are specified, Apache Isis will check
when it initializes for any contradictions, and will fail-fast with an appropriate error message in the
log if there are.

7.3. Length/scale for BigDecimals
The length() and scale() attributes are used to infer the precision/scale of java.math.BigDecimal
property types as they map to decimal(n,p) columns.

For example:

public class Customer {
 @javax.jdo.annotations.Column(length=10, scale=2)
 public BigDecimal getTotalOrdersToDate() { ... }
 public void setTotalOrdersToDate(BigDecimal totalOrdersToDate) { ... }

For <code>BigDecimal</code>s it is also possible to specify the <a anchor="rgant-
Digits"><code>@Digits</code> annotation, whose form is <code>@Digits(integer,
fraction)</code>. There is a subtle difference here: while <code>@Column#scale()</code>
corresponds to <code>@Digits#fraction()</code>, the value of <code>@Column#length()</code> (ie
the precision) is actually the _sum of the <code>@Digits’ `integer()</code> and
<code>fraction()</code> parts.

If both are specified, Apache Isis will check when it initializes for any contradictions, and will fail-
fast with an appropriate error message in the log if there are.

7.4. Hints and Tips
This seems to be a good place to describe some additional common mappings that use @Column.
Unlike the sections above, the attributes specified in these hints and tips aren’t actually part of
Apache Isis metamodel.

56

7.4.1. Mapping foreign keys

The name() attribute can be used to override the name of the column. References to other objects
are generally mapped as foreign key columns. If there are multiple references to a given type, then
you will want to override the name that JDO/DataNucleus would otherwise default.

For example (taken from estatio app):

public class PartyRelationship {
 @Column(name = "fromPartyId", allowsNull = "false")
 public Party getFrom() { ... }
 public void setFrom(Party from) { ... }
 @Column(name = "toPartyId", allowsNull = "false")
 public Party getTo() { ... }
 public void setTo(Party to) { ... }
 ...
}

7.5. Mapping Blobs and Clobs
Isis provides custom value types for Blobs and Clobs. These value types have multiple internal
fields, meaning that they corresponding to multiple columns in the database. Mapping this
correctly requires using @Column within JDO’s @Persistent annotation.

For example, here’s how to map a Blob (taken from (non-ASF) Isis addons' todoapp):

private Blob attachment;
@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
 @javax.jdo.annotations.Column(name = "attachment_name"),
 @javax.jdo.annotations.Column(name = "attachment_mimetype"),
 @javax.jdo.annotations.Column(name = "attachment_bytes", jdbcType = "BLOB",
sqlType = "LONGVARBINARY")
})
@Property(
 domainEvent = AttachmentDomainEvent.class,
 optionality = Optionality.OPTIONAL
)
public Blob getAttachment() { ... }
public void setAttachment(Blob attachment) { ... }

And here’s how to map a Clob (also taken from the todoapp):

57

http://github.com/estatio/estatio
rgcms.pdf#_rgcms_classes_value-types_Blob
rgcms.pdf#_rgcms_classes_value-types_Clob
http://github.com/isisaddons/isis-app-todoapp

private Clob doc;
@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
 @javax.jdo.annotations.Column(name = "doc_name"),
 @javax.jdo.annotations.Column(name = "doc_mimetype"),
 @javax.jdo.annotations.Column(name = "doc_chars", jdbcType = "CLOB", sqlType =
"LONGVARCHAR")
})
@Property(
 optionality = Optionality.OPTIONAL
)
public Clob getDoc() { ... }
public void setDoc(final Clob doc) { ... }

58

Chapter 8. @Digits (javax)
The @javax.validation.constraints.Digits annotation is recognized by Apache Isis as a means to
specify the precision for properties and action parameters of type java.math.BigDecimal.

For example (taken from the (non-ASF) Isis addons' todoapp):

@javax.jdo.annotations.Column(
 scale=2 ①
)
@javax.validation.constraints.Digits(
 integer=10,
 fraction=2 ②
)
public BigDecimal getCost() {
 return cost;
}
public void setCost(final BigDecimal cost) {
 this.cost = cost!=null
 ? cost.setScale(2, BigDecimal.ROUND_HALF_EVEN) ③
 :null;
}

① the @Column#scale() attribute must be …

② … consistent with @Digits#fraction()

③ the correct idiom when setting a new value is to normalized to the correct scale

59

http://github.com/isisaddons/isis-app-todoapp

Chapter 9. @Discriminator (javax.jdo)
The @javax.jdo.annotation.Discriminator is used by JDO/DataNucleus to specify how to discriminate
between subclasses of an inheritance hierarchy.

It is valid to add a @Discriminator for any class, even those not part of an explicitly mapped
inheritance hierarchy. Apache Isis also checks for this annotation, and if present will use the
@Discriminator#value() as the object type, a unique alias for the object’s class name.



Isis parses the @Discriminator annotation from the Java source code; it does not
query the JDO metamodel. This means that it the @Discriminator annotation must
be used rather than the equivalent <discriminator> XML metadata.

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

The object type is used internally by Apache Isis to generate a string representation of an objects
identity (the Oid). This can appear in several contexts, including:

• as the value of o.a.i.applib.services.bookmark.Bookmark#getObjectType()

• in the toString() value of Bookmark

• in the URLs of the RestfulObjects viewer

• in the URLs of the Wicket viewer (in general and in particular if copying URLs)

• in XML snapshots generated by the XmlSnapshotService

For example:

@javax.jdo.annotations.Discriminator(value="custmgmt.Customer")
public class Customer {
 ...
}

has an object type of custmgmt.Customer.

If the object type has not been specified, then Apache Isis will use the fully qualified class name of
the entity.

60

http://www.datanucleus.org/products/accessplatform_4_0/jdo/orm/inheritance.html
ugvro.pdf
ugvw.pdf
ugvw.pdf#_ugvw_features_hints-and-copy-url
rgsvc.pdf#_rgsvc_api_XmlSnapshotService



This might be obvious, but to make explicit: we recommend that you use
namespaces of some form or other.

If the object type has not been specified (by either this annotation, or by
@PersistenceCapable, or by Apache Isis' own @DomainObject#objectType()

annotation/attribute), then (as noted above) Apache Isis will use the fully
qualified class name of the entity.

However, chances are that the fully qualified class name is liable to change over
time, for example if the code is refactored or (more fundamentally) if your
company/organization reorganizes/renames itself/is acquired.

We therefore strongly recommend that you specify an object type for all entities,
one way or another. Specifying @Discriminator will override @PersistenceCapable,
which overrides @DomainObject#objectType(). Using @PersistenceCapable#schema()
is probably the best choice in most cases.


If the object type is not unique across all domain classes then the framework will
fail-fast and fail to boot. An error message will be printed in the log to help you
determine which classes have duplicate object tyoes.

61

Chapter 10. @DomainObject
The @DomainObject annotation applies to domain objects, collecting together all domain semantics
within a single annotation.

The table below summarizes the annotation’s attributes.

Table 12. @DomainObject attributes

Attribute Values (default) Description

auditing() AS_CONFIGURED, ENABLED,
DISABLED
(AS_CONFIGURED)

indicates whether each of the changed
properties of an object should be submitted to
the registered AuditingService (deprecated) or
(its replacement) AuditerService

autoCompleteRepository
()

Domain service class nominate a method on a domain service to be
used for looking up instances of the domain
object

autoCompleteAction() Method name
(autoComplete())

override the method name to use on the auto-
complete repository

bounded() true, false
(false)

Whether the number of instances of this domain
class is relatively small (a "bounded" set), such
that instances could be selected from a drop-
down list box or similar.

created-
LifecycleEvent()

subtype of
ObjectCreatedEvent
(ObjectCreatedEvent.Def
ault)

the event type to be posted to the
EventBusService whenever an instance is created

editing() AS_CONFIGURED, ENABLED,
DISABLED
(AS_CONFIGURED)

whether the object’s properties and collections
can be edited or not (ie whether the instance
should be considered to be immutable)

nature() NOT_SPECIFIED,
JDO_ENTITY,
EXTERNAL_ENTITY,
INMEMORY_ENTITY, MIXIN,
VIEW_MODEL
(NOT_SPECIFIED)

whether the domain object logically is an entity
(part of the domain layer) or is a view model
(part of the application layer); or is a mixin. If
an entity, indicates how its persistence is
managed.

objectType() (none, which implies
fully qualified class
name)

specify an alias for the domain class used to
uniquely identify the object both within the
Apache Isis runtime and externally

persisted-
LifecycleEvent()

subtype of
ObjectPersistedEvent
(ObjectPersistedEvent.D
efault)

the event type to be posted to the
EventBusService whenever an instance has just
been persisted

62

rgsvc.pdf#_rgsvc_spi_AuditingService
rgsvc.pdf#_rgsvc_spi_AuditerService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EventBusService

Attribute Values (default) Description

persisting-
LifecycleEvent()

subtype of
ObjectPersistingEvent
(ObjectPersistingEvent.
Default)

the event type to be posted to the
EventBusService whenever an instance is about
to be persisted

publishing() AS_CONFIGURED, ENABLED,
DISABLED
(AS_CONFIGURED)

whether changes to the object should be
published to the registered PublishingService.

publishing-
PayloadFactory()

subtype of
PublishingPayloadFacto
ry- ForObject (none)

specifies that a custom implementation of
PublishingPayloadFactoryForObject be used to
create the (payload of the) published event
representing the change to the object

removing-
LifecycleEvent()

subtype of
ObjectRemovingEvent
(ObjectRemovingEvent.De
fault)

the event type to be posted to the
EventBusService whenever an instance is about
to be deleted

updated-
LifecycleEvent()

subtype of
ObjectUpdatedEvent
(ObjectUpdatedEvent.Def
ault)

the event type to be posted to the
EventBusService whenever an instance has just
been updated

updating-
LifecycleEvent()

subtype of
ObjectUpdatingEvent
(ObjectUpdatingEvent.De
fault)

the event type to be posted to the
EventBusService whenever an instance is about
to be updated

For example:

@DomainObject(
 auditing=Auditing.ENABLED,
 autoCompleteRepository=CustomerRepository.class
 editing=Editing.ENABLED, ①
 updatedLifecycleEvent=Customer.UpdatedEvent.class

)
public class Customer {
 ...
}

① default value, so could be omitted

10.1. auditing()
The auditing() attribute indicates that if the object is modified, then each of its changed properties
should be submitted to the AuditingService (if one has been configured), or to any

The default value for the attribute is AS_CONFIGURED, meaning that the configuration property

63

rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_spi_PublishingService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_spi_AuditingService
rgcfg.pdf#_rgcfg_configuring-core

isis.services.audit.objects is used to determine the whether the action is audited:

• all

all changed properties of objects are audited

• none

no changed properties of objects are audited

If there is no configuration property in isis.properties then auditing is automatically enabled for
domain objects.

This default can be overridden on an object-by-object basis; if auditing() is set to ENABLED then
changed properties of instances of the domain class are audited irrespective of the configured
value; if set to DISABLED then the changed properties of instances are not audited, again irrespective
of the configured value.

For example:

@DomainObject(
 auditing=Auditing.ENABLED ①
)
public class Customer {
 ...
}

① because set to enabled, will be audited irrespective of the configured value.

10.2. autoCompleteRepository()
The autoCompleteRepository() attribute nominates a single method on a domain service as the
fallback means for looking up instances of the domain object using a simple string.

For example, this might search for a customer by their name or number. Or it could search for a
country based on its ISO-3 code or user-friendly name.


If you require additional control - for example restricting the returned results
based on the object being interacted with - then use the autoComplete…()

supporting method instead.

For example:

64

rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete

@DomainObject(
 autoCompleteRepository=CustomerRepository.class
)
public class Customer {

}

where:

@DomainService
public class CustomerRepository {
 List<Customer> autoComplete(String search); ①
 ...
}

① is assumed to be called "autoComplete", and accepts a single string

10.2.1. autoCompleteAction()

As noted above, by default the method invoked on the repository is assumed to be called
"autoComplete". The optional autoCompleteAction() attribute allows the method on the repository
to be overridden.

For example:

@DomainObject(
 autoCompleteRepository=Customers.class,
 autoCompleteAction="findByName"
)
public class Customer {

}

where in this case findByName might be an existing action already defined:

@DomainService(natureOfService=VIEW_MENU_ONLY)
public class Customers {
 @Action(semantics=SemanticsOf.SAFE)
 public List<Customer> findByName(
 @Parameter(minLength=3) ①
 @ParameterLayout(named="name")
 String name);
 ...
}

① end-user must enter minimum number of characters to trigger the query

65

The autocomplete action can also be a regular method, annotated using @Programmatic:

@DomainService(natureOfService=VIEW_MENU_ONLY)
public class Customers {
 @Programmatic
 public List<Customer> findByName(
 @Parameter(minLength=3)
 String name);
 ...
}



The method specified must be an action, that is, part of the Isis metamodel. Said
another way: it must not be annotated with @Programmatic. However, it can be
hidden or placed on a domain service with nature of DOMAIN, such that the action
would not be rendered otherwise in the UI. Also, the action cannot be restricted
to prototyping only.

10.3. bounded()
Some domain classes are immutable to the user, and moreover have only a fixed number of
instances. Often these are "reference" ("standing") data, or lookup data/pick lists. Typical examples
could include categories, countries, states, and tax or interest rate tables.

Where the number of instances is relatively small, ie bounded, then the bounded() attribute can be
used as a hint. For such domain objects the framework will automatically allow instances to be
selected; Wicket viewer displays these as a drop-down list.

For example:

@DomainObject(
 bounded=true,
 editing=Editing.DISABLED ①
)
public class Currency {
 ...
}

① This attribute is commonly combined with editing=DISABLED to enforce the fact that reference
data is immutable



There is nothing to prevent you from using this attribute for regular mutable
entities, and indeed this is sometimes worth doing during early prototyping.
However, if there is no realistic upper bound to the number of instances of an
entity that might be created, generally you should use autoComplete…()

supporting method or the @DomainObject#autoCompleteRepository() attribute
instead.

66

ugvw.pdf
rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete

10.4. createdLifecycleEvent()
Whenever a domain object is instantiated or otherwise becomes known to the framework, a
"created" lifecycle event is fired. This is typically when the DomainObjectContainer's
newTransientInstance() is called; it will also happen if the object is simply instantiated with new(…),
and then the container’s injectServicesInto(…) method is called.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the object just created. The subscriber could then, for example, update the object, eg looking up
state from some external datastore.

By default the event raised is ObjectCreatedEvent.Default. For example:

@DomainObject
public class ToDoItemDto {
 ...
}

The purpose of the createdLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

@DomainObjectLayout(
 createdLifecycleEvent=ToDoItem.CreatedEvent.class
)
public class ToDoItem {
 public static class CreatedEvent
 extends org.apache.isis.applib.services.eventbus.ObjectCreatedEvent<ToDoItem>
{ }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.4.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

67

rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_object-creation-api
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_services-api
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_services-api
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_services-api
rgsvc.pdf#_rgsvc_api_EventBusService
https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ObjectCreatedEvent ev) {
 if(ev.getSource() instanceof ToDoItem) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.ObjectCreatedEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.4.2. Default, Doop and Noop events

If the createdLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectCreatedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.createdLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the createdLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectCreatedEvent.Doop as such a subclass, so
setting the createdLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectCreatedEvent.Noop; if createdLifecycleEvent
attribute is set to this class, then no event will be posted.

10.5. editing()
The editing() attribute determines whether a domain object’s properties and collections are not
editable (are read-only).

The default is AS_CONFIGURED, meaning that the configuration property isis.objects.editing is used
to determine the whether the object is modifiable:

68

rgcfg.pdf#_rgcfg_configuring-core

• true

the object’s properties and collections are modifiable.

• false

the object’s properties and collections are read-only, ie not modifiable.

If there is no configuration property in isis.properties then object are assumed to be modifiable.



In other words, editing can be disabled globally for an application by setting:

isis.objects.editing=false

We recommend enabling this feature; it will help drive out the underlying
business operations (processes and procedures) that require objects to change;
these can then be captured as business actions.

The related editingDisabledReason() attribute specifies the a hard-coded reason why the object’s
properties and collections cannot be modified directly.

This default can be overridden on an object-by-object basis; if editing() is set to ENABLED then the
object’s properties and collections are editable irrespective of the configured value; if set to
DISABLED then the object’s properties and collections are not editable irrespective of the configured
value.

For example:

@DomainObject(
 editing=Editing.DISABLED,
 editingDisabledReason="Reference data, so cannot be modified"
)
public class Country {
 ...
}


Another interesting example of immutable reference data is to define an entity to
represent individual dates; after all, for a system with an expected lifetime of 20
years that equates to only 7,300 days, a comparatively tiny number of rows to
hold in a database.

10.6. loadedLifecycleEvent()
Whenever a persistent domain object is loaded from the database, a "loaded" lifecycle event is
fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to

69

rgsvc.pdf#_rgsvc_api_EventBusService

the domain object just loaded. The subscriber could then, for example, update or default values on
the object (eg to support on-the-fly migration scenarios).

By default the event raised is ObjectLoadedEvent.Default. For example:

@DomainObject
public class ToDoItemDto {
 ...
}

The purpose of the loadedLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

@DomainObjectLayout(
 loadedLifecycleEvent=ToDoItem.LoadedEvent.class
)
public class ToDoItem {
 public static class LoadedEvent
 extends org.apache.isis.applib.services.eventbus.ObjectLoadedEvent<ToDoItem> {
}
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.6.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ObjectLoadedEvent ev) {
 if(ev.getSource() instanceof ToDoItem) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

70

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.ObjectLoadedEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.6.2. Default, Doop and Noop events

If the loadedLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectLoadedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.loadedLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the loadedLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectLoadedEvent.Doop as such a subclass, so
setting the loadedLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectLoadedEvent.Noop; if loadedLifecycleEvent
attribute is set to this class, then no event will be posted.

10.7. nature()
The nature() attribute is used to characterize the domain object as either an entity (part of the
domain layer) or as a view model (part of the application layer). If the domain object should be
thought of as an entity, it also captures how the persistence of that entity is managed.

For example:

@DomainObject(nature=Nature.VIEW_MODEL)
public class PieChartAnalysis {
 ...
}

Specifically, the nature must be one of:

• NOT_SPECIFIED,

(the default); specifies no paricular semantics for the domain class.

71

• JDO_ENTITY

indicates that the domain object is an entity whose persistence is managed internally by Apache
Isis, using the JDO/DataNucleus objectstore.

• EXTERNAL_ENTITY

indicates that the domain objecct is a wrapper/proxy/stub (choose your term) to an entity that is
managed by some related external system. For example, the domain object may hold just the
URI to a RESTful resource of some third party REST service, or the id of some system accessible
over SOAP.

The identity of an external entity is determined solely by the state of entity’s properties. The
framework will automatically recreate the domain object each time it is interacted with.

• INMEMORY_ENTITY

indicates that the domain object is a wrapper/proxy/stub to a "synthetic" entity, for example one
that is constructed from some sort of internal memory data structure.

The identity of an inmemory entity is determined solely by the state of entity’s properties. The
framework will automatically recreate the domain object each time it is interacted with.

• MIXIN

indicates that the domain object is part of the domain layer, and is contributing behaviour to
objects of some other type as a mixin (also known as a trait).

Equivalent to annotating with @Mixin. For further discussion on using mixins, see mixins in the
user guide.

• VIEW_MODEL

indicates that the domain object is conceptually part of the application layer, and exists to
surfaces behaviour and/or state that is aggregate of one or more domain entities.

The identity of an inmemory entity is determined solely by the state of entity’s properties. The
framework will automatically recreate the domain object each time it is interacted with.

Those natures that indicate the domain object is an entity (of some sort or another) mean then that
the domain object is considered to be part of the domain model layer. As such the domain object’s
class cannot be annotated with @ViewModel or implement the ViewModel interface.

72

ugbtb.pdf#_ugbtb_decoupling_mixins
rgcms.pdf#_rgcms_classes_super_ViewModel



Under the covers Apache Isis' support for VIEW_MODEL, EXTERNAL_ENTITY and
INMEMORY_ENTITY domain objects is identical; the state of the object is encoded into
its internal OID (represented ultimately as its URL), and is recreated directly from
that URL.

Because this particular implementation was originally added to Apache Isis in
support of view models, the term was also used for the logically different external
entities and inmemory entities.

The benefit of nature() is that it allows the developer to properly characterize the
layer (domain vs application) that an entity lives, thus avoiding confusion as
"view model" (the implementation technique) and "view model" (the application
layer concept).

10.8. persistedLifecycleEvent()
Whenever a (just created, still transient) domain object has been saved (INSERTed in)to the
database, a "persisted" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, maintain an external datastore.

 The object should not be modified during the persisted callback.

By default the event raised is ObjectPersistedEvent.Default. For example:

@DomainObject
public class ToDoItemDto {
 ...
}

The purpose of the persistedLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

@DomainObjectLayout(
 persistedLifecycleEvent=ToDoItem.PersistedEvent.class
)
public class ToDoItem {
 public static class PersistedEvent
 extends org.apache.isis.applib.services.eventbus.ObjectPersistedEvent<
ToDoItem> { }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

73

rgsvc.pdf#_rgsvc_api_EventBusService

10.8.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ObjectPersistedEvent ev) {
 if(ev.getSource() instanceof ToDoItem) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.ObjectPersistedEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.8.2. Default, Doop and Noop events

If the persistedLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectPersistedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.persistedLifecycleEvent.postForDefault

configuration property can be set to "false"; this will disable posting.

On the other hand, if the persistedLifecycleEvent has been explicitly specified to some subclass,
then an event will be posted. The framework provides ObjectPersistedEvent.Doop as such a
subclass, so setting the persistedLifecycleEvent attribute to this class will ensure that the event to
be posted, irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectPersistedEvent.Noop; if
persistedLifecycleEvent attribute is set to this class, then no event will be posted.

74

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

10.9. persistingLifecycleEvent()
Whenever a (just created, still transient) domain object is about to be saved (INSERTed in)to the
database, a "persisting" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, update the object, or it could use it
maintain an external datastore. One possible application is to maintain a full-text search database
using Apache Lucene or similar.


Another use case is to maintain "last updated by"/"last updated at" properties.
While you can roll your own, note that the framework provides built-in support
for this use case through the Timestampable role interface.

By default the event raised is ObjectPersistingEvent.Default. For example:

@DomainObject
public class ToDoItemDto {
 ...
}

The purpose of the persistingLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

@DomainObjectLayout(
 persistingLifecycleEvent=ToDoItem.PersistingEvent.class
)
public class ToDoItem {
 public static class PersistingEvent
 extends org.apache.isis.applib.services.eventbus.ObjectPersistingEvent
<ToDoItem> { }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.9.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

75

rgsvc.pdf#_rgsvc_api_EventBusService
https://lucene.apache.org/
rgcms.pdf#_rgcms_classes_roles_Timestampable
https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ObjectPersistingEvent ev) {
 if(ev.getSource() instanceof ToDoItem) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.ObjectPersistingEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.9.2. Default, Doop and Noop events

If the persistingLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectPersistingEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.persistingLifecycleEvent.postForDefault

configuration property can be set to "false"; this will disable posting.

On the other hand, if the persistingLifecycleEvent has been explicitly specified to some subclass,
then an event will be posted. The framework provides ObjectPersistingEvent.Doop as such a
subclass, so setting the persistingLifecycleEvent attribute to this class will ensure that the event to
be posted, irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectPersistingEvent.Noop; if
persistingLifecycleEvent attribute is set to this class, then no event will be posted.

10.10. objectType()
The objectType() attribute is used to provide a unique alias for the object’s class name.

This value is used internally to generate a string representation of an objects identity (the Oid). This
can appear in several contexts, including:

• as the value of o.a.i.applib.services.bookmark.Bookmark#getObjectType()

76

• in the toString() value of Bookmark

• in the URLs of the RestfulObjects viewer

• in the URLs of the Wicket viewer (in general and in particular if copying URLs)

• in XML snapshots generated by the XmlSnapshotService

For example:

@DomainObject(
 objectType="ORD"
)
public class Order {
 ...
}

If the object type has not been specified, then Apache Isis will use the fully qualified class name of
the entity.



This might be obvious, but to make explicit: we recommend that you use
namespaces of some form or other for object types.

As noted above, if the object type has not been specified, then Apache Isis will use
the fully qualified class name of the entity. However, this is liable to change over
time, for example if the code is refactored or (more fundamentally) if your
company/organization reorganizes/renames itself/is acquired.

We therefore strongly recommend that you specify an object type for all entities,
either using objectType() or using the JDO @PersistenceCapable (with a schema()
attribute) or @Discriminator annotations. Specifying @Discriminator will override
@PersistenceCapable, which in turn overrides objectType(). Using
@PersistenceCapable#schema() is probably the best choice in most cases.


If the object type is not unique across all domain classes then the framework will
fail-fast and fail to boot. An error message will be printed in the log to help you
determine which classes have duplicate object tyoes.

10.11. publishing()
The publishing() attribute determines whether and how a modified object instance is published via
the registered implementation of a PublishingService) or PublisherService. This attribute is also
supported for actions, where it controls whether action invocations are published as events, and
for @Property#publishing(), where it controls whether property edits are published as events.

A common use case is to notify external "downstream" systems of changes in the state of the Isis
application.

The default value for the attribute is AS_CONFIGURED, meaning that the configuration property

77

ugvro.pdf
ugvw.pdf
ugvw.pdf#_ugvw_features_hints-and-copy-url
rgsvc.pdf#_rgsvc_api_XmlSnapshotService
rgsvc.pdf#_rgsvc_spi_PublishingService
rgsvc.pdf#_rgsvc_spi_PublisherService
rgcfg.pdf#_rgcfg_configuring-core

isis.services.publish.objects is used to determine the whether the action is published:

• all

all changed objects are published

• none

no changed objects are published

If there is no configuration property in isis.properties then publishing is automatically enabled
for domain objects.

This default can be overridden on an object-by-object basis; if publishing() is set to ENABLED then
changed instances of the domain class are published irrespective of the configured value; if set to
DISABLED then the changed instances are not published, again irrespective of the configured value.

For example:

@DomainObject(
 publishing=Publishing.ENABLED ①
)
public class InterestRate {
 ...
}

① because set to enabled, will be published irrespective of the configured value.

10.11.1. publishingPayloadFactory()

The (optional) related publishingPayloadFactory() specifies the class to use to create the (payload of
the) event to be published by the publishing factory.

Rather than simply broadcast that the object was changed, the payload factory allows a "fatter"
payload to be instantiated that can eagerly push commonly-required information to all subscribers.
For at least some subscribers this should avoid the necessity to query back for additional
information.


Be aware that this attribute is only honoured by the (deprecated)
PublishingService, so should itself be considered as deprecated. It is ignored by
the replacement PublisherService,

10.12. removingLifecycleEvent()
Whenever a (persistent) domain object is about to be removed (DELETEd) from the database, a
"removing" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, could use it maintain an external

78

rgsvc.pdf#_rgsvc_spi_PublishingService
rgsvc.pdf#_rgsvc_spi_PublisherService
rgsvc.pdf#_rgsvc_api_EventBusService

datastore. One possible application is to maintain a full-text search database using Apache Lucene
or similar.


Another use case is to maintain "last updated by"/"last updated at" properties.
While you can roll your own, note that the framework provides built-in support
for this use case through the Timestampable role interface.

By default the event raised is ObjectRemovingEvent.Default. For example:

@DomainObject
public class ToDoItemDto {
 ...
}

The purpose of the removingLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

@DomainObjectLayout(
 removingLifecycleEvent=ToDoItem.RemovingEvent.class
)
public class ToDoItem {
 public static class RemovingEvent
 extends org.apache.isis.applib.services.eventbus.ObjectRemovingEvent<ToDoItem>
{ }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.12.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ObjectRemovingEvent ev) {
 if(ev.getSource() instanceof ToDoItem) { ... }
 }
}

79

https://lucene.apache.org/
rgcms.pdf#_rgcms_classes_roles_Timestampable
https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.ObjectRemovingEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.12.2. Default, Doop and Noop events

If the removingLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectRemovingEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.removingLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the removingLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectRemovingEvent.Doop as such a subclass, so
setting the removingLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectRemovingEvent.Noop; if removingLifecycleEvent
attribute is set to this class, then no event will be posted.

10.13. updatingLifecycleEvent()
Whenever a (persistent) domain object has been modified and is about to be updated to the
database, an "updating" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, update the object, or it could use it
maintain an external datastore. One possible application is to maintain a full-text search database
using Apache Lucene or similar.


Another use case is to maintain "last updated by"/"last updated at" properties.
While you can roll your own, note that the framework provides built-in support
for this use case through the Timestampable role interface.

By default the event raised is ObjectUpdatingEvent.Default. For example:

80

rgsvc.pdf#_rgsvc_api_EventBusService
https://lucene.apache.org/
rgcms.pdf#_rgcms_classes_roles_Timestampable

@DomainObject
public class ToDoItemDto {
 ...
}

The purpose of the updatingLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

@DomainObjectLayout(
 updatingLifecycleEvent=ToDoItem.UpdatingEvent.class
)
public class ToDoItem {
 public static class UpdatingEvent
 extends org.apache.isis.applib.services.eventbus.ObjectUpdatingEvent<ToDoItem>
{ }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.13.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ObjectUpdatingEvent ev) {
 if(ev.getSource() instanceof ToDoItem) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

81

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.ObjectUpdatingEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.13.2. Default, Doop and Noop events

If the updatingLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectUpdatingEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.updatingLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the updatingLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectUpdatingEvent.Doop as such a subclass, so
setting the updatingLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectUpdatingEvent.Noop; if updatingLifecycleEvent
attribute is set to this class, then no event will be posted.

10.14. updatedLifecycleEvent()
Whenever a (persistent) domain object has been modified and has been updated in the database,
an "updated" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object.

 The object should not be modified during the updated callback.

By default the event raised is ObjectUpdatedEvent.Default. For example:

@DomainObject
public class ToDoItemDto {
 ...
}

82

rgsvc.pdf#_rgsvc_api_EventBusService

The purpose of the updatedLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

@DomainObjectLayout(
 updatedLifecycleEvent=ToDoItem.UpdatedEvent.class
)
public class ToDoItem {
 public static class UpdatedEvent
 extends org.apache.isis.applib.services.eventbus.ObjectUpdatedEvent<ToDoItem>
{ }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.14.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ObjectUpdatedEvent ev) {
 if(ev.getSource() instanceof ToDoItem) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.ObjectUpdatedEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

83

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

10.14.2. Default, Doop and Noop events

If the updatedLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectUpdatedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.updatedLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the updatedLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectUpdatedEvent.Doop as such a subclass, so
setting the updatedLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectUpdatedEvent.Noop; if updatedLifecycleEvent
attribute is set to this class, then no event will be posted.

84

Chapter 11. @DomainObjectLayout
The @DomainObjectLayout annotation applies to domain classes, collecting together all UI hints within
a single annotation.


For view models that have been annotated with @ViewModel the equivalent
@ViewModelLayout can be used.

The table below summarizes the annotation’s attributes.

Table 13. @DomainObjectLayout attributes

Attribute Values (default) Description

bookmarking() AS_ROOT, AS_CHILD, NEVER
(NEVER)

whether (and how) this domain object should be
automatically bookmarked

cssClass() Any string valid as a
CSS class

the css class that a domain class (type) should
have, to allow more targetted styling in
application.css

cssClassFa() Any valid Font
awesome icon name

specify a font awesome icon for the action’s
menu link or icon.

cssClassFaPosition() LEFT, RIGHT
(LEFT)

Currently unused.

cssClassUiEvent() subtype of
CssClassUiEvent
(CssClassUiEvent.Defaul
t)

the event type to be posted to the
EventBusService to obtain a CSS class for the
domain object.

describedAs() String. description of this class, eg to be rendered in a
tooltip.

iconUiEvent() subtype of IconUiEvent
(IconUiEvent.Default)

the event type to be posted to the
EventBusService to obtain the icon (name) for the
domain object.

named() String. to override the name inferred from the action’s
name in code.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

paged() Positive integer the page size for instances of this class when
rendered within a table (as returned from an
action invocation)

plural() String. the plural name of the class

titleUiEvent() subtype of TitleUiEvent
(TitleUiEvent.Default)

the event type to be posted to the
EventBusService to obtain the title for the
domain object.

For example:

85

rgcfg.pdf#_rgcfg_application-specific_application-css
http://fortawesome.github.io/Font-Awesome/
http://fortawesome.github.io/Font-Awesome/
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EventBusService

@DomainObjectLayout(
 cssClass="x-key",
 cssClassFa="fa-checklist",
 describedAs="Capture a task that you need to do",
 named="ToDo",
 paged=30,
 plural="ToDo List")
)
public class ToDoItem {
 ...
}


Note that there is (currently) no support for specifying UI hints for domain
objects through the dynamic .layout.json file (only for properties, collections and
actions are supported).

11.1. bookmarking()
The bookmarking() attribute indicates that an entity is automatically bookmarked. This attribute is
also supported for domain objects.

(In the Wicket viewer), a link to a bookmarked object is shown in the bookmarks panel:

86

ugfun.pdf#_ugfun_object-layout_dynamic
images/reference-annotations/DomainObjectLayout/bookmarking.png


Note that this screenshot shows an earlier version of the Wicket viewer UI
(specifically, pre 1.8.0).

For example:

@DomainObject(bookmarking=BookmarkPolicy.AS_ROOT)
public class ToDoItem ... {
 ...
}

indicates that the ToDoItem class is bookmarkable:

It is also possible to nest bookmarkable entities. For example, this screenshot is taken from Estatio:


Note that this screenshot shows an earlier version of the Wicket viewer UI
(specifically, pre 1.8.0).

For example, the Property entity "[OXF] Oxford Super Mall" is a root bookmark, but the Unit child
entity "[OXF-001] Unit 1" only appears as a bookmark but only if its parent Property has already
been bookmarked.

This is accomplished with the following annotations:

87

ugvw.pdf
http://github.com/estatio/estatio
images/reference-annotations/DomainObjectLayout/bookmarking-nested.png
ugvw.pdf

@DomainObject(bookmarking=BookmarkPolicy.AS_ROOT)
public class Property { ... }

and

@DomainObject(bookmarking=BookmarkPolicy.AS_CHILD)
public abstract class Unit { ... }

The nesting can be done to any level; the Estatio screenshot also shows a bookmark nesting Lease >
LeaseItem > LeaseTerm (3 levels deep).

11.2. cssClass()
The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the domain object. Application-specific CSS can then be used to target and
adjust the UI representation of that particular element.

This attribute can also be applied to domain objects, view models, actions properties, collections
and parameters.

For example:

@DomainObject(
 cssClass="x-core-entity"
)
public class ToDoItem { ... }


The similar @DomainObjectLayout#cssClassFa() annotation attribute is also used as
a hint to apply CSS, but in particular to allow Font Awesome icons to be rendered
as the icon for classes.

11.3. cssClassFa()
The cssClassFa() attribute is used to specify the name of a Font Awesome icon name, to be
rendered as the domain object’s icon.

These attributes can also be applied to view models to specify the object’s icon, and to actions to
specify an icon for the action’s representation as a button or menu item.

If necessary the icon specified can be overridden by a particular object instance using the
iconName() method.

For example:

88

rgcfg.pdf#_rgcfg_application-specific_application-css
http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
rgcms.pdf#_rgcms_methods_reserved_iconName

@DomainObjectLayout(
 cssClassFa="fa-check-circle"
)
public class ToDoItem { ... }

There can be multiple "fa-" classes, eg to mirror or rotate the icon. There is no need to include the
mandatory fa "marker" CSS class; it will be automatically added to the list. The fa- prefix can also
be omitted from the class names; it will be prepended to each if required.

The related cssClassFaPosition() attribute is currently unused for domain objects; the icon is
always rendered to the left.


The similar @DomainObjectLayout#cssClass() annotation attribute is also used as a
hint to apply CSS, but for wrapping the representation of an object or object
member so that it can be styled in an application-specific way.

11.4. cssClassUiEvent()
Whenever a domain object is to be rendered, the framework fires off an CSS class UI event to obtain
a CSS class to use in any wrapping <div>s and s that render the domain object. This is as an
alternative to implementing cssClass() reserved method. (If cssClass() is present, then it will take
precedence).

Subscribers subscribe through the EventBusService and can use obtain a reference to the domain
object from the event. From this they can, if they wish, specify a CSS class for the domain object
using the event’s API.


The feature was originally introduced so that @XmlRootElement-annotated view
models could be kept as minimal as possible, just defining the data. UI events
allow subscribers to provide UI hints, while mixins can be used to provide the
behaviour.

By default the event raised is CssClassUiEvent.Default. For example:

@DomainObjectLayout
public class ToDoItemDto {
 ...
}

The purpose of the cssClassUiEvent() attribute is to allows a custom subclass to be emitted instead.
A similar attribute is available for titles and icons.

For example:

89

rgcms.pdf#_rgcms_methods_reserved_cssClass
rgsvc.pdf#_rgsvc_api_EventBusService
ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_decoupling_mixins

@DomainObjectLayout(
 iconUiEvent=ToDoItemDto.CssClassUiEvent.class
)
public class ToDoItemDto {
 public static class CssClassUiEvent
 extends org.apache.isis.applib.services.eventbus.CssClassUiEvent<ToDoItemDto>
{ }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

11.4.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(CssClassUiEvent ev) {
 if(ev.getSource() instanceof ToDoItemDto) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItemDto.CssClassUiEvent ev) {
 ...
 }
}

The subscriber should then use CssClassUiEvent#setCssClass(…) to actually specify the CSS class to
be used.


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

90

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

11.4.2. Default, Doop and Noop events

If the cssClassUiEvent attribute is not explicitly specified (is left as its default value,
CssClassUiEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectLayoutAnnotation.cssClassUiEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the cssClassUiEvent has been explicitly specified to some subclass, then an
event will be posted. The framework provides CssClassUiEvent.Doop as such a subclass, so setting
the cssClassUiEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides CssClassUiEvent.Noop; if cssClassUiEvent attribute is
set to this class, then no event will be posted.

11.4.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically either by calling the EventBusService API directly, or as a result of calling the
DomainObjectContainer's cssClassOf(…) method.

11.5. describedAs()
The describedAs() attribute is used to provide a short description of the domain object to the user.
In the Wicket viewer it is displayed as a 'tool tip'. The attribute can also be specified for collections,
properties, actions, parameters and view models.

For example:

@DescribedAs("A customer who may have originally become known to us via " +
 "the marketing system or who may have contacted us directly.")
public class ProspectiveSale {
 ...
}

11.6. iconUiEvent()
Whenever a domain object is to be rendered, the framework fires off an icon UI event to obtain an
icon (name) for the object (if possible). This is as an alternative to implementing iconName()
reserved method. (If iconName() is present, then it will take precedence).

Subscribers subscribe through the EventBusService and can use obtain a reference to the domain
object from the event. From this they can, if they wish, specify an icon name for the domain object
using the event’s API.

91

rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
ugvw.pdf
rgcms.pdf#_rgcms_methods_reserved_iconName
rgsvc.pdf#_rgsvc_api_EventBusService


The feature was originally introduced so that @XmlRootElement-annotated view
models could be kept as minimal as possible, just defining the data. UI events
allow subscribers to provide UI hints, while mixins can be used to provide the
behaviour.

By default the event raised is IconUiEvent.Default. For example:

@DomainObjectLayout
public class ToDoItemDto {
 ...
}

The purpose of the iconUiEvent() attribute is to allows a custom subclass to be emitted instead. A
similar attribute is available for titles and CSS classes.

For example:

@DomainObjectLayout(
 iconUiEvent=ToDoItemDto.IconUiEvent.class
)
public class ToDoItemDto {
 public static class IconUiEvent
 extends org.apache.isis.applib.services.eventbus.IconUiEvent<ToDoItemDto> { }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

11.6.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(IconUiEvent ev) {
 if(ev.getSource() instanceof ToDoItemDto) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

92

ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_decoupling_mixins
https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItemDto.IconUiEvent ev) {
 ...
 }
}

The subscriber should then use IconUiEvent#setIconName(…) to actually specify the icon name to be
used.


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

11.6.2. Default, Doop and Noop events

If the iconUiEvent attribute is not explicitly specified (is left as its default value,
IconUiEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectLayoutAnnotation.iconUiEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the iconUiEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides IconUiEvent.Doop as such a subclass, so setting the
iconUiEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides IconUiEvent.Noop; if iconUiEvent attribute is set to this
class, then no event will be posted.

11.6.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically either by calling the EventBusService API directly, or as a result of calling the
DomainObjectContainer's iconNameOf(…) method.

11.7. named()
The named() attribute explicitly specifies the domain object’s name, overriding the name that would
normally be inferred from the Java source code. The attribute can also be specified for actions,
collections, properties, parameters, view models and domain services.

93

rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_DomainObjectContainer


Following the don’t repeat yourself principle, we recommend that you only use
this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

For example:

@DomainObjectLayout(
 named="Customer"
)
public class CustomerImpl implements Customer{
 ...
}

It’s also possible to specify a plural form of the name, used by the framework when rendering a
standalone collection of the domain object.


The framework also provides a separate, powerful mechanism for
internationalization.

11.8. paged()
The paged() attribute specifies the number of rows to display in a standalone collection, as returned
from an action invocation. This attribute can also be applied to collections and view models.



The RestfulObjects viewer currently does not support paging. The Wicket viewer
does support paging, but note that the paging is performed client-side rather than
server-side.

We therefore recommend that large collections should instead be modelled as
actions (to allow filtering to be applied to limit the number of rows).

For example:

@DomainObjectLayout(paged=15)
public class Order {
 ...
}

It is also possible to specify a global default for the page size of standalone collections, using the
configuration property isis.viewer.paged.standalone.

11.9. plural()
When Apache Isis displays a standalone collection of several objects, it will label the collection

94

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
ugbtb.pdf#_ugbtb_i18n
ugvro.pdf
ugvw.pdf
rgcfg.pdf#_rgcfg_configuring-core

using the plural form of the object type.

By default the plural name will be derived from the end of the singular name, with support for
some basic English language defaults (eg using "ies" for names ending with a "y").

The plural() attribute allows the plural form of the class name to be specified explicitly. This
attribute is also supported for view models.

For example:

@DomainObjectLayout(plural="Children")
public class Child {
 ...
}

11.10. titleUiEvent()
Whenever a domain object is to be rendered, the framework fires off a title UI event to obtain a title
for the object. This is as an alternative to implementing title() reserved method, or using the
@Title annotation, within the class itself. (If either title() or @Title are present, then they will take
precedence).

Subscribers subscribe through the EventBusService and can use obtain a reference to the domain
object from the event. From this they can, if they wish, specify a title for the domain object using
the event’s API.


The feature was originally introduced so that @XmlRootElement-annotated view
models could be kept as minimal as possible, just defining the data. UI events
allow subscribers to provide UI hints, while mixins can be used to provide the
behaviour.

By default the event raised is TitleUiEvent.Default. For example:

@DomainObjectLayout
public class ToDoItemDto {
 ...
}

The purpose of the titleUiEvent() attribute is to allows a custom subclass to be emitted instead. A
similar attribute is available for icon names and CSS classes.

For example:

95

rgcms.pdf#_rgcms_methods_reserved_title
rgsvc.pdf#_rgsvc_api_EventBusService
ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_decoupling_mixins

@DomainObjectLayout(
 titleUiEvent=ToDoItemDto.TitleUiEvent.class
)
public class ToDoItemDto {
 public static class TitleUiEvent
 extends org.apache.isis.applib.services.eventbus.TitleUiEvent<ToDoItemDto> { }
 ...
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

11.10.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(TitleUiEvent ev) {
 if(ev.getSource() instanceof ToDoItemDto) { ... }
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItemDto.TitleUiEvent ev) {
 ...
 }
}

The subscriber should then use either TitleUiEvent#setTranslatableTitle(…) or
TitleUiEvent#setTitle(…) to actually specify the title to be used.


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

96

https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

11.10.2. Default, Doop and Noop events

If the titleUiEvent attribute is not explicitly specified (is left as its default value,
TitleUiEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectLayoutAnnotation.titleUiEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the titleUiEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides TitleUiEvent.Doop as such a subclass, so setting the
titleUiEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides TitleUiEvent.Noop; if titleUiEvent attribute is set to
this class, thn no event will be posted.

11.10.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically either by calling the EventBusService API directly, or as a result of calling the
DomainObjectContainer's titleOf(…) method.

97

rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_DomainObjectContainer

Chapter 12. @DomainService
The @DomainService annotation indicates that the (concrete) class should be automatically
instantiated as a domain service.

Domain services with this annotation do NOT need to be registered explicitly in isis.properties;
they will be discovered automatically on the CLASSPATH.

The table below summarizes the annotation’s attributes.

Table 14. @DomainService attributes

Attribute Values (default) Description

nature() VIEW, VIEW_MENU_ONLY,
VIEW_CONTRIBUTIONS_ONL
Y, VIEW_REST_ONLY,
DOMAIN (VIEW)

the nature of this service: providing actions for
menus, or as contributed actions, or for the
RestfulObjects REST API, or neither

repositoryFor() if this domain service acts as a repository for an
entity type, specify that entity type. This is used
to determine an icon to use for the service (eg as
shown in action prompts).

menuOrder() Deprecated in 1.8.0; use instead
@DomainServiceLayout#menuOrder()

For example:

@DomainService(
 nature=NatureOfService.DOMAIN,
 repositoryFor=Loan.class
)
public class LoanRepository {
 @Programmatic
 public List<Loan> findLoansFor(Borrower borrower) { ... }
}

12.1. nature()
By default, a domain service’s actions will be rendered in the application menu bar and be
contributed and appear in the REST API and (of course) be available to invoke programmatically
wherever that domain service is injected. This is great for initial prototyping, but later on you may
prefer to add a little more structure. This is the purpose of the nature() attribute: to indicates the
intent of (all of) the actions defined within the domain service.

The values of the enum are:

• VIEW

The default; the service’s actions appear on menu bars, can be contributed, appear in the REST

98

ugvro.pdf

API

• VIEW_MENU_ONLY

The service’s actions appear on menus and in the REST API, but are not contributed to domain
objects or view models

• VIEW_CONTRIBUTIONS_ONLY

The service’s actions are intended only to be used as contributed actions/associations to domain
objects and view models.

The related @ActionLayout#contributedAs() determines whether any given (1-arg) action is
contributed as an association rather than an action.

• VIEW_REST_ONLY

The service’s actions are intended only to be listed in the REST API exposed by the
RestfulObjects viewer.

• DOMAIN

The service and its actions are only intended to be invoked programmatically; they are a
domain layer responsibility.

The actual class name of the domain service is only rendered for the VIEW, VIEW_MENU_ONLY and
VIEW_REST_ONLY natures. Thus, you might also want to adopt naming conventions for your domain
classes so you can infer the nature from the class. For example, the naming convention adopted (by
and large) by the (non-ASF) Isis Addons is ProgrammaticServices or Repository as a suffix for DOMAIN
services, and Contributions as a suffix for VIEW_CONTRIBUTIONS_ONLY services.

For example:

@DomainService(
 nature=NatureOfService.VIEW_CONTRIBUTIONS_ONLY
)
public class LoanContributions { ①
 @Action(semantics=SemanticsOf.SAFE) ②
 @ActionLayout(contributed=Contributed.AS_ASSOCIATION)
 public List<Loan> currentLoans(Borrower borrower) { ... }
 public Borrower newLoan(Borrower borrower, Book book) { ... }
}

① Contributions as a suffix for a domain service that contributes a number of actions to Borrowers.
Note that Borrower could be a (marker) interface, so this functionality is "mixed in" merely by the
class (eg LibraryMember) implementing this interface

② actions contibuted as associations (a collection in this case) must have safe semantics

Another example:

99

ugvro.pdf
http://isisaddons.org

@DomainService(
 nature=NatureOfService.DOMAIN
)
public class LoanRepository { ①
 @Programmatic ②
 public List<Loan> findLoansFor(Borrower borrower) { ... }
}

① Repository as a suffix for a domain-layer service

② methods on DOMAIN services are often @Programmatic; they will never be exposed in the UI, so
there’s little point in including them in Apache Isis' metamodel

A final example:

@DomainService(
 nature=NatureOfService.VIEW_MENU_ONLY
)
public class Loans { ①
 @Action(semantics=SemanticsOf.SAFE)
 public List<Loan> findOverdueLoans() { ... }
 @Inject
 LoanRepository loanRepository; ②
}

① name is intended to be rendered in the UI

② it’s common for domain-layer domain services to be injected into presentation layer services
(such as VIEW_MENU_ONLY and VIEW_CONTRIBUTIONS_ONLY).

12.2. repositoryFor()
The repositoryFor() attribute is intended for domain services (probably with a nature=DOMAIN) that
are intended to act as repositories for domain entities.

For example:

@DomainService(
 nature=NatureOfService.DOMAIN,
 repositoryFor=Loan.class
)
public class LoanRepository {
 @Programmatic
 public List<Loan> findLoansFor(Borrower borrower) { ... }
}

Currently the metadata is unused; one planned use is to infer the icon for the domain service from
the icon of the nominated entity.

100

Chapter 13. @DomainServiceLayout
The @DomainServiceLayout annotation applies to domain services, collecting together all view layout
semantics within a single annotation.

 You will also find some additional material in the object layout chapter.

The table below summarizes the annotation’s attributes.

Table 15. @DomainServiceLayout attributes

Attribute Values (default) Description

menuBar() PRIMARY, SECONDARY,
TERTIARY (PRIMARY).

the menubar in which the menu that holds this
service’s actions should reside.

menuOrder() the order of the service’s menu with respect to
other service’s.

named() string, eg "Customers" name of this class (overriding the name derived
from its name in code)

For example:

@DomainService
@DomainServiceLayout(
 menuBar=MenuBar.PRIMARY,
 menuOrder="100",
 named="ToDos"
)
public class ToDoItems {
 ...
}


Note that there is (currently) no support for specifying UI hints for domain
services through the dynamic .layout.json file (only for properties, collections
and actions are supported).

13.1. menuBar()
The menuBar() attribute is a hint to specify where on the application menu a domain service’s
actions should be rendered.

For example:

101

ugfun.pdf#_ugfun_object-layout_application-menu
ugfun.pdf#_ugfun_object-layout_dynamic

@DomainService
@DomainServiceLayout(menuBar=MenuBar.PRIMARY)
public class ToDoItems {
 ...
}

In the Wicket viewer, domain services placed on the PRIMARY menu bar appears to the left:

Domain services placed on the SECONDARY menu bar appear to the right:

102

ugvw.pdf
images/reference-annotations/DomainServiceLayout/menuBar-primary.png

Domain services placed on the TERTIARY appear in the menu bar associated with the user’s name
(far top-right)

The grouping of multiple domain services actions within a single drop-down is managed by the
@DomainServiceLayout#menuOrder() attribute.

103

images/reference-annotations/DomainServiceLayout/menuBar-secondary.png
images/reference-annotations/DomainServiceLayout/menuBar-tertiary.png

 The RestfulObjects viewer does not support this attribute.

13.2. menuOrder()
The menuOrder() attribute determines the ordering of a domain service’s actions as menu items
within a specified menu bar and top-level menu.

The algorithm works as follows:

• first, the menuBar() determines which of the three menu bars the service’s actions should be
rendered

• then, the domain service’s top-level name (typically explicitly specified using named()) is used to
determine the top-level menu item to be rendered on the menu bar

• finally, if there is more than domain service that has the same name, then the menuOrder
attribute is used to order those actions on the menu item drop-down.

For example, the screenshot below shows the "prototyping" menu from the (non-ASF) Isis addons'
todoapp:

The Wicket viewer automatically places separators between actions from different domain
services. From this we can infer that there are actually five different domain services that are all
rendered on the "prototyping" top-level menu.

One of these is the todoapp’s DemoDomainEventSubscriptions service:

104

ugvro.pdf
http://github.com/isisaddons/isis-app-todoapp
http://github.com/isisaddons/isis-app-todoapp
images/reference-annotations/DomainServiceLayout/menuOrder.png
ugvw.pdf

@DomainService(
 nature = NatureOfService.VIEW_MENU_ONLY
)
@DomainServiceLayout(
 menuBar = MenuBar.SECONDARY,
 named = "Prototyping", ①
 menuOrder = "500.20") ②
public class DemoDomainEventSubscriptions {
 @ActionLayout(named="Set subscriber behaviour")
 @MemberOrder(sequence = "500.20.1") ③
 public void subscriberBehaviour(...) { ... }
 ...
}

① render on the "Prototyping" menu

② positioning relative to other service’s on the "Prototyping" menu

③ by convention (nothing more) the @MemberOrder#sequence() attribute continues the same Dewey
decimal sequence format (a simple string "1" could in fact have been used instead)

while another comes from the (non-ASF) Isis addons' devutils module:

@DomainServiceLayout(
 menuBar = MenuBar.SECONDARY,
 named = "Prototyping", ①
 menuOrder = "500.600" ②
)
public class DeveloperUtilitiesServiceMenu {
 @MemberOrder(sequence = "500.600.1") ③
 public Clob downloadMetaModel() { ... }
 @MemberOrder(sequence = "500.600.2")
 public Blob downloadLayouts() { ... }
 @ActionLayout(named = "Rebuild Services Meta Model")
 @MemberOrder(sequence = "500.600.3")
 public void refreshServices() { ... }
 ...
}

① render on the "Prototyping" menu

② positioning relative to other service’s on the "Prototyping" menu; this appears after the
DemoDomainEventSubscriptions service shown above

③ by convention (nothing more) the @MemberOrder#sequence() attribute continues the same Dewey
decimal sequence format (a simple string "1", "2", "3", … could in fact have been used instead)

13.3. named()
The named() attribute explicitly specifies the domain service’s name, overriding the name that
would normally be inferred from the Java source code. This attribute can also be specified for

105

http://github.com/isisaddons/isis-module-devutils

actions, collections, properties, parameters, domain objects and view models.


The value of this attribute also has an important role to play in the positioning of
the domain service’s actions relative to the actions of other domain services. See
menuOrder() for a full discussion with examples.

For example:

@DomainService
@DomainServiceLayout(
 named="Customers"
)
public class CustomerRepository {
 ...
}

106

Chapter 14. @Facets
The @Facets annotation allows FacetFactory implementations and so can be used to run install
arbitrary Facet`s for a type. Generally this is not needed, but can be useful for overriding a
custom programming model where a `FacetFactory is not typically included.

 FacetFactory is an important internal API that is used by Apache Isis to

107

Chapter 15. @HomePage
The @HomePage annotation allows a single (no-arg, query-only) action on a single domain service to
be nominated as the action to invoke for the default home page. This often returns a view model
that acts as some sort of dashboard, presenting key information and makeing the most commonly
used actions easy to invoke.

For example, the (non-ASF) Isis addons' todoapp uses @HomePage to return a dashboard of todo items
to complete:

The corresponding code is:

@DomainService(nature = NatureOfService.DOMAIN)
public class ToDoAppDashboardService {
 @Action(
 semantics = SemanticsOf.SAFE
)
 @HomePage
 public ToDoAppDashboard lookup() {
 return container.injectServicesInto(new ToDoAppDashboard());
 }
 @Inject
 private DomainObjectContainer container;
}

108

http://github.com/isisaddons/isis-app-todoapp
images/reference-annotations/HomePage/HomePage.png

where ToDoAppDashboard is:

@DomainObject(nature = Nature.VIEW_MODEL)
public class ToDoAppDashboard {
 public String title() { return "Dashboard"; }

 public List<ToDoItem> getNotYetComplete() { ... }
 public List<ToDoItem> getComplete() { ... }

 public Blob exportToWordDoc() { ... } ①
}

① associated using dynamic layouts with the notYetComplete collection.

The other two actions shown in the above screenshot — exportAsXml and downloadLayout — are
actually contributed to the ToDoAppDashboard through various domain services, as is the
downloadLayout action.

109

ugfun.pdf#_ugfun_object-layout_dynamic

Chapter 16. @Inject (javax)
Apache Isis automatically injects domain services into other domain services and also into domain
objects and view models. In fact, it also injects domain services into integration tests and fixture
scripts.


One omission: Apache Isis (currently) does not inject services into
o.a.i.applib.spec.Specification instances (as used by @Property#mustSatisfy()
and @Parameter#mustSatisfy() annotations.

Isis supports several syntaxes for injecting domain services. The simplest uses the
@javax.inject.Inject annotation on the field, as defined in JSR-330.

For example:

public class Customer {
 public List<Order> findRecentOrders() { ①
 return orders.recentOrdersFor(this);
 }
 @javax.inject.Inject
 OrderRepository orders; ②
}

① an alternative implementation would be to implement findRecentOrders() as a contributed
action.

② we recommend default (rather than private) visibility so that unit tests can easily mock out the
service

16.1. Alternative syntaxes
Isis also supports setter-based injection:

public class Customer {
 ...
 public void setOrderRepository(OrderRepository orderRepository) { ... }
}

and also supports an additional syntax of using inject… as the prefix:

public class Customer {
 ...
 public void injectOrderRepository(OrderRepository orderRepository) { ... }
}

Generally we recommend using @javax.inject.Inject; it involves less code, and is more

110

ugtst.pdf#_ugtst_integ-test-support
ugtst.pdf#_ugtst_fixture-scripts
ugtst.pdf#_ugtst_fixture-scripts
https://jcp.org/en/jsr/detail?id=330
ugfun.pdf#_ugfun_how-tos_contributed-members
ugfun.pdf#_ugfun_how-tos_contributed-members

immediately familiar to most Java developers.

16.2. Injecting collection of services
It can sometimes be useful to have declared multiple implementations of a particular domain
service. For example, you may have a module that defines an SPI service, where multiple other
modules might provide implementations of that SPI (akin to the chain of responsibility pattern). To
support these scenarios, it is possible to annotate a List or Collection.

For example, suppose that we provide an SPI service to veto the placing of Orders for certain
Customers:

public interface CustomerOrderAdvisorService {
 @Programmatic
 String vetoPlaceOrder(Customer c);

We could then inject a collection of these services:

public class Customer {
 public Order placeOrder(Product p, int quantity) { ... }
 public String disablePlaceOrder(Product p, int quantity) {
 for(CustomerOrderAdvisorService advisor: advisors) {
 String reason = advisor.vetoPlaceOrder(this);
 if(reason != null) { return reason; }
 }
 return null;
 }
 @Inject
 Collection<CustomerOrderAdvisorService> advisors; ①
}

① inject a collection of the services.


An alternative and almost equivalent design would be to publish an event using
the EventBusService and implement the domain services as subscribers to the
event. This alternative design is used in the (non-ASF) Isis addons' poly module,
for example.

16.3. Manually injecting services
Isis performs dependency injection when domain entities are recreated. It will also perform
dependency injection if an object is created through the DomainObjectContainer.

For example, to create a new (transient) domain object, the idiom is:

111

rgsvc.pdf#_rgsvc_api_EventBusService
http://github.com/isisaddons/isis-module-poly

Customer cust = container.newTransientInstance(Customer.class); ①
// initialize state of "cust"
container.persist(cust);

① where container is an instance of DomainObjectContainer.

View models are created similarly:

ToDoAppDashboard dashboard = container.newViewModelInstance(ToDoAppDashboard.class);

If you prefer, though, you can simply instantiate domain objects using "new" and then inject
domain services manually:

Customer cust = new Customer();
container.injectServicesInto(cust);
// initialize state of "cust"
container.persist(cust);

or if you prefer:

Customer cust = container.injectServicesInto(new Customer());
// initialize state of "cust"
container.persist(cust);



There is one subtle difference between using
DomainObjectContainer#newTransientInstance(…) and
DomainObjectContainer#injectServicesInto(…), in that with the former Apache
Isis will automatically initialize all fields to their default values.

This isn’t a particular useful feature (and indeed can sometimes be rather
confusing) so you may well wish to standardize on using injectServicesInto(…)

throughout.

112

rgsvc.pdf#_rgsvc_api_DomainObjectContainer

Chapter 17. @MemberGroupLayout
The @MemberGroupLayout annotation specifies how an object’s properties and collections are grouped
together into columns, also specifying the relative positioning of those columns. It works in
conjunction with the @MemberOrder annotation.

The @MemberOrder annotation is used to specify the relative order of domain object members, that is:
properties, collections and actions. It works in conjunction with the @MemberGroupLayout annotation.

The annotation defines two attributes, name() and sequence(). Broadly speaking the name() attribute
is used to group or associate members together, while the sequence() attribute orders members
once they have been grouped.


As this is an important topic, there is a separate chapter that discussed object
layout in full.

113

ugfun.pdf#_ugfun_object-layout

Chapter 18. @MemberOrder
The @MemberOrder annotation is used to specify the relative order of domain object members, that is:
properties, collections and actions. It works in conjunction with the @MemberGroupLayout annotation.

The annotation defines four attributes:

• columnSpans() — of type int[] — which specifies the relative column sizes of the three columns
that render properties as well as a fourth column that renders only collections

• left() — of type String[] - that specifies the order of the property groups (inferred from
@MemberOrder#name()) as applied to properties) in the left-most column

• middle() — of type String[] - that specifies the order of the property groups (if any) as applied to
properties) in the middle column

• right() — of type String[] - that specifies the order of the property groups (if any) as applied to
properties) in the right-most column

Collections are always rendered in the "last" column. This can appear either below the columns
holding properties (if their column spans = 12), or can be rendered to the right of the property
columns (if the spans of the property columns come to <12 leaving enough room for the span of the
collection column).


As this is an important topic, there is a separate chapter that discussed object
layout in full.


The annotation is one of a handful (others including @Collection,
@CollectionLayout, @Property) and @PropertyLayout that can also be applied to the
field, rather than the getter method. This is specifically so that boilerplate-
busting tools such as Project Lombok can be used.

114

ugfun.pdf#_ugfun_object-layout
https://projectlombok.org/

Chapter 19. @Nullable (javax)
Apache Isis' defaults for properties and parameters is that they are mandatory unless otherwise
stated. The @javax.annotation.Nullable annotation is recognized by Apache Isis for both properties
and parameters as means to indicate that the property/parameter is not mandatory.

For example:

@javax.annotation.Nullable
public String getName() {
 return name;
}
public void setName(final String name) {
 this.name = name;
}

or:

public Customer updateName(@javax.annotation.Nullable final String name) {
 setName(name);
 return this;
}

Apache Isis does provide several other ways to specify optionality: using the
@Property#optionality() / @Parameter#optionality() annotation. For properties, the optionality can
also be inferred from the @Column#allowsNull() attribute.


See the @Property#optionality() documentation for a much fuller discussion on
the relationship between using the Apache Isis annotations vs
@Column#allowsNull().

If more than one method is specified then the framework will validate that there are no
incompatibilities (and fail to boot otherwise). This can also be verified using the validate goal of the
Apache Isis Maven plugin.

115

rgmvn.pdf#_rgmvn_validate

Chapter 20. @NotPersistent (javax.jdo)
The @javax.jdo.annotation.NotPersistent annotation is used by JDO/DataNucleus to indicate that a
property should not be persisted to the database.

Apache Isis also uses this annotation, though (currently) only in the very minimal way to suppress
checking of inconsistent metadata between JDO and Isis annotations (eg @Column#allowsNull() vs
@Property#optionality(), or @Column#length() and @Property#maxLength()).



Isis parses the @NotPersistent annotation from the Java source code; it does not
query the JDO metamodel. This means that it the @NotPersistent annotation must
be used rather than the equivalent <field> XML metadata.

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

116

http://www.datanucleus.org/products/accessplatform_4_0/jdo/fields_properties.html

Chapter 21. @MinLength
The @MinLength annotation is used to specify the minimum number of characters in a search of an
autoComplete…() supporting method.

For example:

public ToDoItem add(
 @TypicalLength(20)
 final ToDoItem toDoItem) {
 getDependencies().add(toDoItem);
 return this;
}
public List<ToDoItem> autoComplete0Add(
 final @MinLength(2)
 String search) {
 final List<ToDoItem> list = toDoItems.autoComplete(search);
 list.removeAll(getDependencies());
 list.remove(this);
 return list;
}

The `@Parameter(minLength=…)`e can also be used (even though strictly speaking the search
argument is not a parameter of the action).

117

rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete

Chapter 22. @Parameter
The @Parameter annotation applies to action parameters collecting together all domain semantics
within a single annotation.

The table below summarizes the annotation’s attributes.

Table 16. @Paramter attributes

Attribute Values (default) Description

fileAccept() Media type or file
extension

Hints the file type to be uploaded for Blob or
Clob.

Note that this does not prevent the user from
uploading some other file type; rather it merely
defaults the file type in the file open dialog.

maxLength() Positive integer maximum number of characters for string
parameters; ignored otherwise

minLength() Positive integer Deprecated; use <code>@MinL
ength</code> instead.
 Can be used to
specify the minimum length for <a
href="rgcms.pdf#_rgcms_methods_prefixes_auto
Complete"><code>autoComplete…​
()</code> supporting method; but because
this _is a supporting method rather than
the action method itself, we now feel it is
misleading to use the <code>@Parameter</code>
annotation in this situation.

mustSatisfy() implementation of
o.a.i.applib.spec.Spec
ification

allows arbitrary validation to be applied

optionality() MANDATORY, OPTIONAL
(MANDATORY)

specifies a parameter is optional rather than
mandatory

regexPattern() regular expression validates the contents of a string parameter
against the regular expression pattern

regexPatternFlags() value of flags as
normally passed to
java.util.regex.
Pattern#compile(…)

modifies the compilation of the regular
expression

regexPatternReplacemen
t()

Unused.

For example:

118

rgcms.pdf#_rgcms_classes_value-types_Blob
rgcms.pdf#_rgcms_classes_value-types_Clob

public class Customer {
 public static class EmailSpecification extends AbstractSpecification<String> {
 public String satisfiesSafely(String proposed) {
 return EmailUtil.ensureValidEmail(proposed); ①
 }
 }
 @Action(semantics=SemanticsOf.IDEMPOTENT)
 public Customer updateEmail(
 @Parameter(
 maxLength=30,
 mustSatisfy=EmailSpecification.class,
 optionality=Optionality.OPTIONAL,
 regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
 regexPatternFlags=Pattern.CASE_INSENSITIVE
)
 @ParameterLayout(named="New Email Address")
 final String newEmailAddress
 ...
 }
}

① the (fictitious) EmailUtil.ensureValid(…) (omitted for brevity) returns a string explaining if an
email is invalid

22.1. fileAccept()
The fileAccept() attribute applies only to Blob or Clob parameters, indicating the type of file to
accept when uploading a new value. The attribute is also supported on properties.

For example:

public class Scanner {
 public ScannedDocument newScan(
 @Parameter(fileAccept="image/*") ①
 @ParameterLayout(named="Scanned image") ②
 final Blob scannedImage) {
 ...
 }
}

① as per reference docs, either a media type (such as image/*) or a file type extension (such as
.png).

② the @ParameterLayout(named=…) attribute is required for Java 7; for Java 8 it can be omitted if the
(non-ASF) Isis addons' paraname8 metamodel extension is used.

119

rgcms.pdf#_rgcms_classes_value-types_Blob
rgcms.pdf#_rgcms_classes_value-types_Clob
http://www.w3schools.com/tags/att_input_accept.asp
http://github.com/isisaddons/isis-metamodel-paraname8

22.2. maxLength()
The maxLength() attribute applies only to String parameters, indicating the maximum number of
characters that the user may enter (for example in a text field in the UI). It is ignored if applied to
parameters of any other type. This attribute can also be applied to properties.

For example:

public class CustomerRepository {
 public Customer newCustomer(
 @Parameter(maxLength=30)
 @ParameterLayout(named="First Name") ①
 final String firstName,
 @Parameter(maxLength=50)
 @ParameterLayout(named="Last Name")
 final String lastName) {
 ...
 }
}

① the @ParameterLayout(named=…) attribute is required for Java 7; for Java 8 it can be omitted if the
(non-ASF) Isis addons' paraname8 metamodel extension is used.

22.3. mustSatisfy()
The mustSatisfy() attribute allows arbitrary validation to be applied to parameters using an
(implementation of a) org.apache.isis.applib.spec.Specification object. The attribute is also
supported on properties.


The specification implementations can (of course) be reused between parameters
and properties.

The Specification is consulted during validation, being passed the proposed value. If the proposed
value fails, then the value returned is the used as the invalidity reason.

For example:

120

http://github.com/isisaddons/isis-metamodel-paraname8

public class StartWithCapitalLetterSpecification
 extends AbstractSpecification<String> { ①
 public String satisfiesSafely(String proposed) {
 return "".equals(proposed)
 ? "Empty string"
 : !Character.isUpperCase(proposed.charAt(0))
 ? "Does not start with a capital letter"
 : null;
 }
}
public class CustomerRepository {
 public Customer newCustomer(
 @Parameter(
 mustSatisfy=StartWithCapitalLetterSpecification.class
)
 @ParameterLayout(named="First Name")
 final String firstName,
 @Parameter(
 mustSatisfy=StartWithCapitalLetterSpecification.class
)
 @ParameterLayout(named="Last Name")
 final String lastName) {
 ...
 }
 ...
}

① the AbstractSpecification class conveniently handles type-safety and dealing with null values.
The applib also provides SpecificationAnd and SpecificationOr to allow specifications to be
combined "algebraically".

It is also possible to provide translatable reasons. Rather than implement Specification, instead
implement Specification2 which defines the API:

public interface Specification2 extends Specification {
 public TranslatableString satisfiesTranslatable(Object obj); ①
}

① Return null if specification satisfied, otherwise the reason as a translatable string

With Specification2 there is no need to implement the inherited satifies(Object); that method will
never be called.

22.4. optionality()
By default, Apache Isis assumes that all parameters of an action are required (mandatory). The
optionality() attribute allows this to be relaxed. The attribute is also supported for properties.

121


The attribute has no meaning for a primitive type such as int: primitives will
always have a default value (e.g. zero). If optionality is required, then use the
corresponding wrapper class (e.g. java.lang.Integer) and annotate with
Parameter#optionality() as required.

The values for the attribute are simply OPTIONAL or MANDATORY.

For example:

public class Customer {
 public Order placeOrder(
 final Product product,
 @ParameterLayout(named = "Quantity")
 final int quantity,
 @Parameter(optionality = Optionality.OPTIONAL)
 @ParameterLayout(named = "Special Instructions")
 final String instr) {
 ...
 }
 ...
}

 It is also possible to specify optionality using @Nullable annotation.

22.5. regexPattern()
There are three attributes related to enforcing regular expressions:

• The regexPattern() attribute validates the contents of any string parameter with respect to a
regular expression pattern. It is ignored if applied to parameters of any other type. This
attribute can also be specified for properties.

• The regexPatternFlags() attribute specifies flags that modify the handling of the pattern. The
values are those that would normally be passed to
java.util.regex.Pattern#compile(String,int).

• The related regexPatternReplacement() attribute specifies the error message to show if the
provided argument does not match the regex pattern.

For example:

122

public class Customer {
 public void updateEmail(
 @Parameter(
 regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
 regexPatternFlags = Pattern.CASE_INSENSITIVE,
 regexPatternReplacement = "Must be valid email address (containing a
'@') symbol" ①
)
 @ParameterLayout(named = "Email")
 final String email) {
 ...
 }
)

① Note that there is currently no i18n support for this phrase.

123

Chapter 23. @ParameterLayout
The @ParameterLayout annotation applies to action parameters, collecting together all UI hints within
a single annotation.

The table below summarizes the annotation’s attributes.

Table 17. @ParameterLayout attributes

Attribute Values (default) Description

cssClass() Any string valid as a
CSS class

the css class that a parameter should have, to
allow more targetted styling in application.css

describedAs() String description of this parameter, eg to be rendered
in a tooltip.

labelPosition() LEFT, TOP, RIGHT, NONE
(LEFT)

in forms, the positioning of the label relative to
the property value.
Default is LEFT, unless multiLine in which case
TOP. The value RIGHT is only supported for
boolean parameters.

multiLine() Positive integer for string parameters, render as a text area over
multiple lines.
If set > 1, then then labelPosition defaults to TOP.

named() String the name of this parameter.
For Java 7 this is generally required. For Java 8,
the name can often be inferred from the code so
this attribute allows the name to be overridden.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

namedEscaped() true, false (true) whether to HTML escape the name of this
parameter.

renderedAsDayBefore() for date parameters only, render the date as one
day prior to the actually stored date (eg the end
date of an open interval into a closed interval)

typicalLength() the typical entry length of a field, use to
determine the optimum width for display

For example:

124

rgcfg.pdf#_rgcfg_application-specific_application-css

public class ToDoItem {
 public ToDoItem updateDescription(
 @ParameterLayout(
 cssClass="x-key",
 describedAs="What needs to be done",
 labelPosition=LabelPosition.LEFT,
 named="Description of this <i>item</i>",
 namedEscaped=false,
 typicalLength=80)
 final String description) {
 setDescription(description);
 return this;
 }
 ...
}


Note that there is (currently) no support for specifying UI hints for domain
services through the dynamic .layout.json file (only for properties, collections
and actions are supported).

23.1. cssClass()
The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the action parameter. Application-specific CSS can then be used to target
and adjust the UI representation of that particular element.

This attribute can also be applied to domain objects, view models, actions properties, collections
and parameters.

For example:

public class ToDoItem {
 public ToDoItem postpone(
 @ParameterLayout(
 named="until",
 cssClass="x-key"
)
 LocalDate until
) { ... }
 ...
}

23.2. describedAs()
The describedAs() attribute is used to provide a short description of the action parameter to the
user. In the Wicket viewer it is displayed as a 'tool tip'. The describedAs() attribute can also be

125

ugfun.pdf#_ugfun_object-layout_dynamic
rgcfg.pdf#_rgcfg_application-specific_application-css
ugvw.pdf

specified for collections, properties, actions, domain objects and view models.

Descriptions may be provided for objects, members (properties, collections and actions), and for
individual parameters within an action method. @DescribedAs therefore works in a very similar
manner to @Named <!--(see ?)-→.

To provide a description for an individual action parameter, use the @DescribedAs annotation in-line
i.e. immediately before the parameter declaration.

For example:

public class Customer {
 public Order placeOrder(
 Product product,
 @ParameterLayout(
 named="Quantity",
 describedAs="The quantity of the product being ordered"
)
 int quantity) {
 ...
 }
 ...
}

23.3. labelPosition()
The labelPosition() attribute determines the positioning of labels for parameters. This attribute
can also be specified for properties.

The positioning of labels is typically LEFT, but can be positioned to the TOP. The one exception is
multiLine() string parameters, where the label defaults to TOP automatically (to provide as much
real-estate for the multiline text field as possible).

For boolean parameters a positioning of RIGHT is also allowed; this is ignored for all other types.

It is also possible to suppress the label altogether, using NONE.

For example:

126

public class Order {
 public Order changeStatus(
 OrderStatus newStatus
 @Parameter(
 optionality=Optionality.OPTIONAL
)
 @ParameterLayout(
 named="Reason",
 labelPosition=LabelPosition.TOP
)
 String reason) {
 ...
 }
 ...
}

To get an idea of how these are rendered (in the Wicket viewer), see
PropertyLayout#labelPosition().

23.4. multiLine()
The multiLine() attribute specifies that the text field for a string parameter should span multiple
lines. It is ignored for other parameter types. The attribute is also supported for properties.

For example:

public class BugReport {
 public BugReport updateStepsToReproduce(
 @Parameter(named="Steps")
 @ParameterLayout(
 numberOfLines=10
)
 final String steps) {
 ...
 }
 ...
}


If set > 1 (as would normally be the case), then the default labelPosition defaults
to TOP (rather than LEFT, as would normally be the case).

23.5. named()
The named() attribute explicitly specifies the action parameter’s name. This attribute can also be
specified for actions, collections, properties, domain objects, view models and domain services.

Unlike most other aspects of the Apache Isis metamodel, the name of method parameters cannot

127

ugvw.pdf

(prior to Java 8, at least) be inferred from the Java source code. Without other information, Apache
Isis uses the object’s type (int, String etc) as the name instead. This can be sufficient for
application-specific reference types (eg ToDoItem) but is generally not sufficient for primitives and
other value types.

The named() attribute (or the deprecated @Named annotation) is therefore often required to specify
the parameter name.

As of Java 8, the Java reflection API has been extended. The (non-ASF) Isis addons' paraname8
metamodel extension provides support for this. Note that your application must (obviously) be
running on Java 8, and be compiled with the -parameters compile flag for javac.

By default the name is HTML escaped. To allow HTML markup, set the related namedEscaped()
attribute to false.

For example:

public class Customer {
 public Order placeOrder(
 final Product product
 ,@ParameterLayout(named="Quantity")
 final int quantity) {
 Order order = newTransientInstance(Order.class);
 order.modifyCustomer(this);
 order.modifyProduct(product);
 order.setQuantity(quantity);
 return order;
 }
 ...
}


The framework also provides a separate, powerful mechanism for
internationalization.

23.6. renderedAsDayBefore()
The renderedAsDayBefore() attribute applies only to date parameters whereby the date will be
rendered as the day before the value actually held in the domain object. It is ignored for
parameters of other types. This attribute is also supported for properties.

This behaviour might at first glance appear odd, but the rationale is to support the use case of a
sequence of instances that represent adjacent intervals of time. In such cases there would typically
be startDate and endDate properties, eg for all of Q2. Storing this as a half-closed interval — eg [1-
Apr-2015, 1-July-2015) — can substantially simplify internal algorithms; the endDate of one interval
will correspond to the startDate of the next.

However, from an end-user perspective the requirement may be to render the interval as a fully
closed interval; eg the end date should be shown as 30-Jun-2015.

128

http://github.com/isisaddons/isis-metamodel-paraname8
ugbtb.pdf#_ugbtb_i18n

This attribute therefore bridges the gap; it presents the information in a way that makes sense to an
end-user, but also stores the domain object in a way that is easy work with internally.

For example:

public class Tenancy {
 public void changeDates(
 @ParameterLayout(named="Start Date")
 LocalDate startDate,
 @ParameterLayout(
 named="End Date",
 renderedAsDayBefore=true
)
 LocalDate endDate) {
 ...
 }
}

23.7. typicalLength()
The typicalLength() attribute indicates the typical length of a string parameter. It is ignored for
parameters of other types. The attribute is also supported for properties.

The information is intended as a hint to the UI to determine the space that should be given to
render a particular string parameter. That said, note that the Wicket viewer uses the maximum
space available for all fields, so in effect ignores this attribute.

For example:

public class Customer {
 public Customer updateName(
 @Parameter(maxLength=30)
 @ParameterLayout(
 named="First name",
 typicalLength=20
)
 final String firstName,
 @Parameter(maxLength=30)
 @ParameterLayout(
 named="Last name",
 typicalLength=20
)
 final String lastName) {
 ...
 }
 ...
}

129

ugvw.pdf

Chapter 24. @PersistenceCapable (javax.jdo)
The @javax.jdo.annotation.PersistenceCapable is used by JDO/DataNucleus to indicate that a class is
a domain entity to be persisted to the database.

Apache Isis also checks for this annotation, and if the @PersistenceCapable#schema() attribute is
present will use it to form the object type.



Isis parses the @PersistenceCapable annotation from the Java source code; it does
not query the JDO metamodel. This means that it the @PersistenceCapable
annotation must be used rather than the equivalent <class> XML metadata.

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

The object type is used internally by Apache Isis to generate a string representation of an objects
identity (the Oid). This can appear in several contexts, including:

• as the value of o.a.i.applib.services.bookmark.Bookmark#getObjectType()

• in the toString() value of Bookmark

• in the URLs of the RestfulObjects viewer

• in the URLs of the Wicket viewer (in general and in particular if copying URLs)

• in XML snapshots generated by the XmlSnapshotService

The actual format of the object type used by Apache Isis for the concatenation of schema() and
@PersistenceCapable#table(). If the table() is not present, then the class' simple name is used
instead.

For example:

@javax.jdo.annotations.PersistenceCapable(schema="custmgmt")
public class Customer {
 ...
}

has an object type of custmgmt.Customer, while:

@javax.jdo.annotations.PersistenceCapable(schema="custmgmt", table="Address")
public class AddressImpl {
 ...
}

has an object type of custmgmt.Address.

On the other hand:

130

http://www.datanucleus.org/products/accessplatform_4_0/jdo/class_mapping.html
ugvro.pdf
ugvw.pdf
ugvw.pdf#_ugvw_features_hints-and-copy-url
rgsvc.pdf#_rgsvc_api_XmlSnapshotService

@javax.jdo.annotations.PersistenceCapable(table="Address")
public class AddressImpl {
 ...
}

does not correspond to an object type, because the schema() attribute is missing.

If the object type has not been specified, then Apache Isis will use the fully qualified class name of
the entity.



This might be obvious, but to make explicit: we recommend that you use
namespaces of some form or other.

If the object type has not been specified (by either this annotation, or by
@Discriminator, or by Apache Isis' own @DomainObject#objectType()

annotation/attribute), then (as noted above) Apache Isis will use the fully
qualified class name of the entity.

However, chances are that the fully qualified class name is liable to change over
time, for example if the code is refactored or (more fundamentally) if your
company/organization reorganizes/renames itself/is acquired.

Isis' recognition of @PersistenceCapable#schema() makes namespacing of object
types comparatively trivial, and moreover aligns the namespacing with the way
in which the tables in the database are namespaced by the database schema.

We therefore strongly recommend that you specify an object type for all entities,
one way or another. Using @PersistenceCapable#schema() is probably the best
choice in most cases.


If the object type is not unique across all domain classes then the framework will
fail-fast and fail to boot. An error message will be printed in the log to help you
determine which classes have duplicate object tyoes.

131

Chapter 25. @PostConstruct (javax)
The @javax.annotation.PostConstruct annotation, as defined in JSR-250, is recognized by Apache
Isis as a callback method on domain services to be called just after they have been constructed, in
order that they initialize themselves.

It is also recognized for view models (eg annotated with @ViewModel).

For the default application-scoped (singleton) domain services, this means that the method, if
present, is called during the bootstrapping of the application. For @RequestScoped domain services,
the method is called at the beginning of the request.

The signature of the method is:

@PostConstruct ①
public void init() { ... } ②

① It is not necessary to annotate the method with @Programmatic; it will be automatically excluded
from the Apache Isis metamodel.

② the method can have any name, but must have public visibility.

In the form shown above the method accepts no arguments. Alternatively - for domain services
only, not view models - the method can accept a parameter of type Map<String,String>:

@PostConstruct
@Programmatic
public void init(Map<String,String> properties) { ... }

Isis uses argument to pass in the configuration properties read from all configuration files:


Alternatively, you could inject DomainObjectContainer into the service and read
configuration properties using DomainObjectContainer#getProperty(…) and
related methods. Note that when using this latter API only those configuration
properties prefixes application. key are provided.

A common use case is for domain services that interact with the EventBusService. For example:

132

https://jcp.org/en/jsr/detail?id=250
ugbtb.pdf#_ugbtb_view-models
rgcfg.pdf#_rgcfg_configuration-files
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_EventBusService

@DomainService(nature=NatureOfService.DOMAIN)
public class MySubscribingService {
 @PostConstruct
 public void postConstruct() {
 eventBusService.register(this);
 }
 @PreDestroy
 public void preDestroy() {
 eventBusService.unregister(this);
 }
 ...
 @javax.inject.Inject
 EventBusService eventBusService;
}


In this particular use case, it is generally simpler to just subclass from
AbstractSubscriber.

Other use cases include obtaining connections to external datasources, eg subscribing to an
ActiveMQ router, say, or initializing/cleaning up a background scheduler such as Quartz.

See also @PreDestroy

133

rgcms.pdf#_rgcms_classes_super_AbstractSubscriber

Chapter 26. @PreDestroy (javax)
The @javax.annotation.PreDestroy annotation, as defined in JSR-250, recognized by Apache Isis as a
callback method on domain services to be called just as they go out of scope.

For the default application-scoped (singleton) domain services, this means that the method, if
present, is called just prior to the termination of the application. For @RequestScoped domain
services, the method is called at the end of the request.

The signature of the method is:

@PreDestroy ①
public void deinit() { ... } ②

① It is not necessary to annotate the method with @Programmatic; it will be automatically excluded
from the Apache Isis metamodel.

② the method can have any name, but must have public visibility, and accept no arguments.

A common use case is for domain services that interact with the EventBusService. For example:

@DomainService(nature=NatureOfService.DOMAIN)
public class MySubscribingService {
 @PostConstruct
 public void init() {
 eventBusService.register(this);
 }
 @PreDestroy
 public void deinit() {
 eventBusService.unregister(this);
 }
 ...
 @javax.inject.Inject
 EventBusService eventBusService;
}


In this particular use case, it is generally simpler to just subclass from
AbstractSubscriber.

Other use cases include obtaining connections to external datasources, eg subscribing to an
ActiveMQ router, say, or initializing/cleaning up a background scheduler such as Quartz.

See also @PostConstruct

134

https://jcp.org/en/jsr/detail?id=250
rgsvc.pdf#_rgsvc_api_EventBusService
rgcms.pdf#_rgcms_classes_super_AbstractSubscriber

Chapter 27. @PrimaryKey (javax.jdo)
The @javax.jdo.annotation.PrimaryKey annotation is used by JDO/DataNucleus to indicate that a
property is used as the primary key for an entity with application-managed identity.

Apache Isis also uses this annotation in a very minimal way: to ensure that the framework’s own
logic to initialize newly instantiated objects (eg using
DomainObjectContainer#newTransientInstance(…) does not touch the primary key, and also to ensure
that the primary key property is always disabled (read-only).



Isis parses the @NotPersistent annotation from the Java source code; it does not
query the JDO metamodel. This means that it the @NotPersistent annotation must
be used rather than the equivalent <field> XML metadata.

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

135

rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
http://www.datanucleus.org/products/accessplatform_4_0/jdo/application_identity.html

Chapter 28. @Programmatic
The @Programmatic annotation causes the method to be excluded completely from the Apache Isis
metamodel. This means it won’t appear in any UI, and it won’t appear in any mementos or
snapshots.

A common use-case is to ignore implementation-level artifacts. For example:

public class Customer implements Comparable<Customer> {
 ...
 @Programmatic
 public int compareTo(Customer c) {
 return getSalary() - c.getSalary();
 }
 ...
}

Note that @Programmatic does not simply imply @Hidden; it actually means that the class member will
not be part of the Apache Isis metamodel.

136

rgsvc.pdf#_rgsvc_api_MementoService
rgsvc.pdf#_rgsvc_api_XmlSnapshotService

Chapter 29. @Property
The @Property annotation applies to properties collecting together all domain semantics within a
single annotation.

It is also possible to apply the annotation to actions of domain services that are acting as
contributed properties.

Table 18. @Property attributes

Attribute Values (default) Description

domainEvent() subtype of
PropertyDomainEvent
(PropertyDomainEvent.De
fault)

the event type to be posted to the
EventBusService to broadcast the property’s
business rule checking (hide, disable, validate)
and its modification (before and after).

editing() ENABLED, DISABLED,
AS_CONFIGURED
(AS_CONFIGURED)

whether a property can be modified or cleared
from within the UI

fileAccept() Media type or file
extension

Hints the files to be uploaded to a Blob or Clob.

Note that this does not prevent the user from
uploading some other file type; rather it merely
defaults the file type in the file open dialog.

hidden() EVERYWHERE,
OBJECT_FORMS,
PARENTED_TABLES,
STANDALONE_TABLES,
ALL_TABLES, NOWHERE
(NOWHERE)

indicates where (in the UI) the property should
be hidden from the user.

maxLength() maximum number of characters for string
parameters; ignored otherwise
In many/most cases you should however use
@Column#length()

mustSatisfy() implementation of
o.a.i.applib.spec.Spec
ification

allows arbitrary validation to be applied

notPersisted() true, false
(false)

whether to exclude from snapshots.
[WARNING] ==== Property must also be
annotated with
@javax.jdo.annotations.NotPersistent in order
to not be persisted. ====

optionality() specifies a property is optional rather than
mandatory
In many/most cases you should however use
@Column#allowNulls()

regexPattern() regular expression validates the contents of a string parameter
against the regular expression pattern

137

../../more-advanced-topics/how-to-01-062-How-to-decouple-dependencies-using-contributions.html
rgsvc.pdf#_rgsvc_api_EventBusService
rgcms.pdf#_rgcms_classes_value-types_Blob
rgcms.pdf#_rgcms_classes_value-types_Clob

Attribute Values (default) Description

regexPatternFlags() value of flags as
normally passed to
java.util.regex.
Pattern#compile(…)

modifies the compilation of the regular
expression

For example:

@DomainObject
public class Customer {
 public static class EmailSpecification extends AbstractSpecification<String> {
 public String satisfiesSafely(String proposed) {
 return EmailUtil.ensureValidEmail(proposed); ①
 }
 }
 @javax.jdo.annotations.Column(allowNulls="true") ②
 @Property(
 maxLength=30,
 minLength=5,
 mustSatisfy=EmailSpecification.class,
 regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
 regexPatternFlags=Pattern.CASE_INSENSITIVE
)
 public String getEmailAddress() { ... }
 public void setEmailAddress(String emailAddress) { ... }
 ...
}

① the (fictitious) EmailUtil.ensureValid(…) (omitted for brevity) returns a string explaining if an
email is invalid

② generally use instead of the @Property#optionality() attribute


The annotation is one of a handful (others including @Collection,
@CollectionLayout and @PropertyLayout) that can also be applied to the field,
rather than the getter method. This is specifically so that boilerplate-busting tools
such as Project Lombok can be used.

29.1. domainEvent()
Whenever a domain object (or list of domain objects) is to be rendered, the framework fires off
multiple domain events for every property, collection and action of the domain object. In the cases
of the domain object’s properties, the events that are fired are:

• hide phase: to check that the property is visible (has not been hidden)

• disable phase: to check that the property is usable (has not been disabled)

• validate phase: to check that the property’s arguments are valid (to modify/clear its value)

138

https://projectlombok.org/

• pre-execute phase: before the modification of the property

• post-execute: after the modification of the property

Subscribers subscribe through the EventBusService using either Guava or Axon Framework
annotations and can influence each of these phases.

By default the event raised is PropertyDomainEvent.Default. For example:

public class ToDoItem {
 @Property()
 public LocalDate getDueBy() { ... }
 ...
}

The domainEvent() attribute allows a custom subclass to be emitted allowing more precise
subscriptions (to those subclasses) to be defined instead. This attribute is also supported for
actions and properties.

For example:

public class ToDoItem {
 public static class DueByChangedEvent extends PropertyDomainEvent<ToDoItem,
LocalDate> { } ①
 @Property(domainEvent=ToDoItem.DueByChangedEvent)
 public LocalDate getDueBy() { ... }
 ...
}

① inherit from PropertyDomainEvent<T,P> where T is the type of the domain object being interacted
with, and P is the type of the property (LocalDate in this example)

The benefit is that subscribers can be more targetted as to the events that they subscribe to.


As of 1.10.0 the framework provides no-arg constructor and will initialize the
domain event using (non-API) setters rather than through the constructor. This
substantially reduces the boilerplate.

29.1.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

139

rgsvc.pdf#_rgsvc_api_EventBusService
https://github.com/google/guava
http://www.axonframework.org/
https://github.com/google/guava
rgsvc.pdf#_rgsvc_api_EventBusService
http://www.axonframework.org/

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(PropertyDomainEvent ev) {
 ...
 }
}

or can be fine-grained (by subscribing to specific event subtypes):

@DomainService(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
 @com.google.common.eventbus.Subscribe
 public void on(ToDoItem.DueByChangedEvent ev) {
 ...
 }
}


If the AxonFramework is being used, replace
@com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

The subscriber’s method is called (up to) 5 times:

• whether to veto visibility (hide)

• whether to veto usability (disable)

• whether to veto execution (validate)

• steps to perform prior to the property being modified

• steps to perform after the property has been modified.

The subscriber can distinguish these by calling ev.getEventPhase(). Thus the general form is:

140

@Programmatic
@com.google.common.eventbus.Subscribe
public void on(PropertyDomainEvent ev) {
 switch(ev.getEventPhase()) {
 case HIDE:
 // call ev.hide() or ev.veto("") to hide the property
 break;
 case DISABLE:
 // call ev.disable("...") or ev.veto("...") to disable the property
 break;
 case VALIDATE:
 // call ev.invalidate("...") or ev.veto("...")
 // if proposed property value is invalid
 break;
 case EXECUTING:
 break;
 case EXECUTED:
 break;
 }
}

It is also possible to abort the transaction during the executing or executed phases by throwing an
exception. If the exception is a subtype of RecoverableException then the exception will be rendered
as a user-friendly warning (eg Growl/toast) rather than an error.

29.1.2. Default, Doop and Noop events

If the domainEvent attribute is not explicitly specified (is left as its default value,
PropertyDomainEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.propertyAnnotation.domainEvent.postForDefault configuration property can
be set to "false"; this will disable posting.

On the other hand, if the domainEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides PropertyDomainEvent.Doop as such a subclass, so setting the
domainEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides PropertyDomainEvent.Noop; if domainEvent attribute is
set to this class, then no event will be posted.

29.1.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically by wrapping the target object using the WrapperFactory service.

141

rgsvc.pdf#_rgsvc_api_WrapperFactory

29.2. editing()
The editing() attribute can be used to prevent a property from being modified or cleared, ie to
make it read-only. This attribute can also be specified for collections, and can also be specified for
the domain object.

The related editingDisabledReason() attribute specifies the a hard-coded reason why the property
cannot be modified directly.

Whether a property is enabled or disabled depends upon these factors:

• whether the domain object has been configured as immutable through the
@DomainObject#editing() attribute

• else (that is, if the domain object’s editability is specified as being
<code>AS_CONFIGURED</code>), then the value of the configuration property
<code>isis.objects.editing</code>. If set to <code>false</code>, then the object’s
properties (and collections) are _not editable

• else, then the value of the @Property(editing=…) attribute itself

• else, the result of invoking any supporting disable…() supporting methods

Thus, to make a property read-only even if the object would otherwise be editable, use:

public class Customer {
 @Property(
 editing=Editing.DISABLED,
 editingDisabledReason="The credit rating is derived from multiple factors"
)
 public int getInitialCreditRating(){ ... }
 public void setInitialCreditRating(int initialCreditRating) { ... }
}


To reiterate, it is not possible to enable editing for a property if editing has been
disabled at the object-level.

29.3. fileAccept()
The fileAccept() attribute applies only to Blob or Clob parameters, indicating the type of file to
accept when uploading a new value. The attribute is also supported on parameters.

For example:

142

rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_classes_value-types_Blob
rgcms.pdf#_rgcms_classes_value-types_Clob

public class ScannedDocument {

 @Property(fileAccept="image/*") ①
 private Blob scannedImage;
 // getters and setters omitted

}

① as per reference docs, either a media type (such as image/*) or a file type extension (such as
.png).

29.4. hidden()
Properties can be hidden at the domain-level, indicating that they are not visible to the end-user.
This attribute can also be applied to actions and collections.


It is also possible to use @Property#hidden() to hide an action at the domain layer.
Both options are provided with a view that in the future the view-layer semantics
may be under the control of (expert) users, whereas domain-layer semantics
should never be overridden or modified by the user.

For example:

public class Customer {
 @Property(hidden=Where.EVERYWHERE)
 public int getInternalId() { ... }
 @Property(hidden=Where.ALL_TABLES)
 public void updateStatus() { ... }
 ...
}

The acceptable values for the where parameter are:

• Where.EVERYWHERE or Where.ANYWHERE

The property should be hidden everywhere.

• Where.ANYWHERE

Synonym for everywhere.

• Where.OBJECT_FORMS

The property should be hidden when displayed within an object form.

• Where.PARENTED_TABLES

The property should be hidden when displayed as a column of a table within a parent object’s

143

http://www.w3schools.com/tags/att_input_accept.asp

collection.

• Where.STANDALONE_TABLES

The property should be hidden when displayed as a column of a table showing a standalone list
of objects, for example as returned by a repository query.

• Where.ALL_TABLES

The property should be hidden when displayed as a column of a table, either an object’s *
collection or a standalone list. This combines PARENTED_TABLES and STANDALONE_TABLES.

• Where.NOWHERE

The property should not be hidden, overriding any other metadata/conventions that would
normally cause the property to be hidden.

For example, if a property is annotated with @Title, then normally this should be hidden from all
tables. Annotating with @Property(where=Where.NOWHERE) overrides this.

 The RestfulObjects viewer has only partial support for these Where enums.

29.5. maxLength()
The maxLength() attribute applies only to String properties, indicating the maximum number of
characters that the user may enter (for example in a text field in the UI). The attribute It is ignored
if applied to properties of any other type. This attribute can also be applied to parameters.

That said, properties are most commonly defined on persistent domain objects (entities), in which
case the JDO @Column will in any case need to be specified. Apache Isis can infer the maxLength
semantic directly from the equivalent @Column#length() annotation/attribute.

For example:

public class Customer {
 @javax.jdo.annotations.Column(length=30)
 public String getFirstName() { ... }
 public void setFirstName(String firstName) { ... }
 ...
}

In this case there is therefore no need for the @Property#maxLength() attribute.

29.5.1. Non-persistent properties

Of course, not every property is persistent (it could instead be derived), and neither is every
domain object an entity (it could be a view model). For these non persistable properties the
maxLength() attribute is still required.

144

ugvro.pdf

For example:

public class Customer {
 @javax.jdo.annotation.NotPersistent ①
 @Property(maxLength=100)
 public String getFullName() { ... } ②
 public void setFullName(String fullName) { ... } ③
 ...
}

① a non persisted (derived) property

② implementation would most likely derive full name from constituent parts (eg first name,
middle initial, last name)

③ implementation would most likely parse the input and update the constituent parts

29.6. mustSatisfy()
The mustSatisfy() attribute allows arbitrary validation to be applied to properties using an
(implementation of a) org.apache.isis.applib.spec.Specification object. The attribute is also
supported on parameters.


The specification implementations can (of course) be reused between properties
and parameters.

The Specification is consulted during validation, being passed the proposed value. If the proposed
value fails, then the value returned is the used as the invalidity reason.

For example:

public class StartWithCapitalLetterSpecification
 extends AbstractSpecification<String> { ①
 public String satisfiesSafely(String proposed) {
 return "".equals(proposed)
 ? "Empty string"
 : !Character.isUpperCase(proposed.charAt(0))
 ? "Does not start with a capital letter"
 : null;
 }
}
public class Customer {
 @Property(mustSatisfy=StartWithCapitalLetterSpecification.class)
 public String getFirstName() { ... }
 ...
}

① the AbstractSpecification class conveniently handles type-safety and dealing with null values.
The applib also provides SpecificationAnd and SpecificationOr to allow specifications to be

145

combined "algebraically".

It is also possible to provide translatable reasons. Rather than implement Specification, instead
implement Specification2 which defines the API:

public interface Specification2 extends Specification {
 public TranslatableString satisfiesTranslatable(Object obj); ①
}

① Return null if specification satisfied, otherwise the reason as a translatable string

With Specification2 there is no need to implement the inherited satifies(Object); that method will
never be called.

29.7. notPersisted()
The (somewhat misnamed) notPersisted() attribute indicates that the collection should be excluded
from any snapshots generated by the XmlSnapshotService. This attribute is also supported for
collections.


This annotation does not specify that a property is not persisted in the
JDO/DataNucleus objectstore. See below for details as to how to additionally
annotate the property for this.

For example:

public class Order {
 @Property(notPersisted=true)
 public Order getPreviousOrder() {...}
 public void setPreviousOrder(Order previousOrder) {...}
 ...
}

Historically this annotation also hinted as to whether the property’s value contents should be
persisted in the object store. However, the JDO/DataNucleus objectstore does not recognize this
annotation. Thus, to ensure that a property is actually not persisted, it should also be annotated
with @javax.jdo.annotations.NotPersistent.

For example:

146

rgsvc.pdf#_rgsvc_api_XmlSnapshotService

public class Order {
 @Property(notPersisted=true) ①
 @javax.jdo.annotations.NotPersistent ②
 public Order getPreviousOrder() {...}
 public void setPreviousOrder(Order previousOrder) {...}
 ...
}

① ignored by Apache Isis

② ignored by JDO/DataNucleus

Alternatively, if the property is derived, then providing only a "getter" will also work:

public class Order {
 public Order getPreviousOrder() {...}
 ...
}

29.8. optionality()
By default, Apache Isis assumes that all properties of an domain object or view model are required
(mandatory). The optionality() attribute allows this to be relaxed. The attribute is also supported
for parameters.

That said, properties are most commonly defined on persistent domain objects (entities), in which
case the JDO @Column should be specified. Apache Isis can infer the maxLength directly from the
equivalent @Column#length() annotation.

That said, properties are most commonly defined on persistent domain objects (entities), in which
case the JDO @Column will in any case need to be specified. Apache Isis can infer the optionality
semantic directly from the equivalent @Column#allowNulls() annotation/attribute.

For example:

public class Customer {
 @javax.jdo.annotations.Column(allowNulls="true")
 public String getMiddleInitial() { ... }
 public void setMiddleInitial(String middleInitial) { ... }
 ...
}

In this case there is no need for the @Property#optionality() attribute.

29.8.1. Mismatched defaults

If the @Column#allowNulls() attribute is omitted and the `@Property#optionality() attribute is also

147

omitted, then note that Isis' defaults and JDO’s defaults differ. Specifically, Isis always assumes
properties are mandatory, whereas JDO specifies that primitives are mandatory, but all reference
types are optional.

When Apache Isis initializes it checks for these mismatches during its metamodel validation phase,
and will fail to boot ("fail-fast") if there is a mismatch. The fix is usually to add the
@Column#allowsNulls() annotation/attribute.

29.8.2. Superclass inheritance type

There is one case (at least) it may be necessary to annotate the property with both
@Column#allowsNull and also @Property#optionality(). If the property is logically mandatory and is
in a subclass, but the mapping of the class hierarchy is to store both the superclass and subclass(es)
into a single table (ie a "roll-up" mapping using
javax.jdo.annotations.InheritanceStrategy#SUPERCLASS_TABLE), then JDO requires that the property
is annotated as @Column#allowsNull="true": its value will be not defined for other subclasses.

In this case we therefore require both annotations.

@javax.jdo.annotations.PersistenceCapable
@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.NEW_TABLE)
public abstract class PaymentMethod {
 ...
}
@javax.jdo.annotations.PersistenceCapable
@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.SUPERCLASS_TABLE)
public class CreditCardPaymentMethod extends PaymentMethod {
 private String cardNumber;
 @javax.jdo.annotations.Column(allowNulls="true")
 @Property(optionality=Optionality.MANDATORY)
 public String getCardNumber() { return this.cardNumber; }
 public void setCardNumber(String cardNumber) { this.cardNumber = cardNumber; }
 ...
}

Alternatively, you could rely on the fact that Apache Isis never looks at fields (whereas JDO does)
and move the JDO annotation to the field:

@javax.jdo.annotations.PersistenceCapable
@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.SUPERCLASS_TABLE)
public class CreditCardPaymentMethod extends PaymentMethod {
 @javax.jdo.annotations.Column(allowNulls="true")
 private String cardNumber;
 public String getCardNumber() { return this.cardNumber; }
 public void setCardNumber(String cardNumber) { this.cardNumber = cardNumber; }
 ...
}

148

However this at first glance this might be read as eing that the property is optional whereas Isis'
default (required) applies. Also, in the future Apache Isis may be extended to support reading
annotations from fields.

29.8.3. Non-persistent properties

Of course, not every property is persistent (it could instead be derived), and neither is every
domain object an entity (it could be a view model). For these non persistable properties the
optionality() attribute is still required.

For example:

public class Customer {
 @javax.jdo.annotation.NotPersistent ①
 @Property(optionality=Optionality.OPTIONAL)
 public String getFullName() { ... } ②
 public void setFullName(String fullName) { ... } ③
 ...
}

① a non persisted (derived) property

② implementation would most likely derive full name from constituent parts (eg first name,
middle initial, last name)

③ implementation would most likely parse the input and update the constituent parts


The attribute has no meaning for a primitive type such as int: primitives will
always have a default value (e.g. zero). If optionality is required, then use the
corresponding wrapper class (e.g. java.lang.Integer) and annotate with
Parameter#optionality() as required.

The values for the attribute are simply OPTIONAL or MANDATORY.

For example:

public class Customer {
 public Order placeOrder(
 final Product product,
 @ParameterLayout(named = "Quantity")
 final int quantity,
 @Parameter(optionality = Optionality.OPTIONAL)
 @ParameterLayout(named = "Special Instructions")
 final String instr) {
 ...
 }
 ...
}

149

 It is also possible to specify optionality using @Nullable annotation.

29.9. regexPattern()
There are three attributes related to enforcing regular expressions:

• The regexPattern() attribute validates the contents of any string property with respect to a
regular expression pattern. It is ignored if applied to properties of any other type. This attribute
can also be specified for parameters.

• The regexPatternFlags() attribute specifies flags that modify the handling of the pattern. The
values are those that would normally be passed to
java.util.regex.Pattern#compile(String,int).

• The related regexPatternReplacement() attribute specifies the error message to show if the
provided argument does not match the regex pattern.

For example:

public class Customer {
 @Property(
 regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
 regexPatternFlags=Pattern.CASE_INSENSITIVE,
 regexPatternReplacement = "Must be valid email address (containing a '@')
symbol" ①
)
 public String getEmail() { ... }
}

① Note that there is currently no i18n support for this phrase.

150

Chapter 30. @PropertyLayout
The @PropertyLayout annotation applies to properties collecting together all UI hints within a single
annotation.

The table below summarizes the annotation’s attributes.

Table 19. @PropertyLayout attributes

Attribute Values (default) Description

cssClass() Any string valid as a
CSS class

the css class that a property should have, to
allow more targetted styling in application.css

describedAs() String description of this property, eg to be rendered in
a tooltip.

hidden() EVERYWHERE,
OBJECT_FORMS,
PARENTED_TABLES,
STANDALONE_TABLES,
ALL_TABLES, NOWHERE
(NOWHERE)

indicates where (in the UI) the property should
be hidden from the user.

labelPosition() LEFT, TOP, RIGHT, NONE
(LEFT)

in forms, the positioning of the label relative to
the property value.
Defaults is LEFT, unless multiLine in which case
TOP. The value RIGHT is only supported for
boolean properties.
It is also possible to change the default through a
configuration property

multiLine() Positive integer for string properties, render as a text area over
multiple lines.
If set > 1, then labelPosition defaults to TOP.

named() String to override the name inferred from the
collection’s name in code.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

namedEscaped() true, false
(true)

whether to HTML escape the name of this
property.

renderedAsDayBefore() true, false
(false)

for date properties only, render the date as one
day prior to the actually stored date.

typicalLength() Positive integer. the typical entry length of a field, use to
determine the optimum width for display

For example:

151

rgcfg.pdf#_rgcfg_application-specific_application-css
rgcfg.pdf#_rgcfg_configuring-core_isis-viewers-propertyLayout-labelPosition

public class ToDoItem {
 @PropertyLayout(
 cssClass="x-key",
 named="Description of this <i>item</i>",
 namedEscaped=false,
 describedAs="What needs to be done",
 labelPosition=LabelPosition.LEFT,
 typicalLength=80
)
 public String getDescription() { ... }
 ...
}

It is also possible to apply the annotation to actions of domain services that are acting as
contributed properties.

As an alternative to using the @PropertyLayout annotation, a dynamic layout using .layout.json file
can be specified; for example:

"description": {
 "propertyLayout": {
 "cssClass": "x-key",
 "describedAs": "What needs to be done",
 "labelPosition": "LEFT",
 "typicalLength": 80
 }
}


The annotation is one of a handful (others including @Collection,
@CollectionLayout and @Property) that can also be applied to the field, rather than
the getter method. This is specifically so that boilerplate-busting tools such as
Project Lombok can be used.

30.1. cssClass()
The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the property. Application-specific CSS can then be used to target and adjust
the UI representation of that particular element.

This attribute can also be applied to domain objects, view models, actions collections and
parameters.

For example:

152

../../more-advanced-topics/how-to-01-062-How-to-decouple-dependencies-using-contributions.html
ugfun.pdf#_ugfun_object-layout_dynamic
https://projectlombok.org/
rgcfg.pdf#_rgcfg_application-specific_application-css

public class ToDoItem {
 @PropertyLayout(cssClass="x-key")
 public LocalDate getDueBy() { ... }
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"dueBy": {
 "propertyLayout": { "cssClass": "x-key" }
}

30.2. describedAs()
The describedAs() attribute is used to provide a short description of the property to the user. In the
Wicket viewer it is displayed as a 'tool tip'. The attribute can also be specified for collections,
actions, parameters, domain objects and view models.

For example:

public class Customer {
 @DescribedAs("The name that the customer has indicated that they wish to be " +
 "addressed as (e.g. Johnny rather than Jonathan)")
 public String getFirstName() { ... }
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"firstName:" {
 "propertyLayout": {
 "describedAs": "The name that the customer has indicated that they wish to be
addressed as (e.g. Johnny rather than Jonathan)"
 }
}

30.3. labelPosition()
The labelPosition() attribute determines the positioning of labels for properties. This attribute can
also be specified for parameters.

The positioning of labels is typically LEFT, but can be positioned to the TOP. The one exception is
multiLine() string properties, where the label defaults to TOP automatically (to provide as much
real-estate for the multiline text field as possible).

For boolean properties a positioning of RIGHT is also allowed; this is ignored for all other types.

153

ugfun.pdf#_ugfun_object-layout_dynamic
ugvw.pdf
ugfun.pdf#_ugfun_object-layout_dynamic

It is also possible to suppress the label altogether, using NONE.

For example:

public class ToDoItem {
 @PropertyLayout(
 labelPosition=LabelPosition.TOP
)
 public String getDescription() { ... }
 public void setDescription(String description) { ... }
 ...
}

To get an idea of how these are rendered (in the Wicket viewer), we can look at the (non-ASF) Isis
addons' todoapp that happens to have examples of most of these various label positions.

The default LEFT label positioning is used by the cost property:

The TOP label positioning is used by the category property:

Labels are suppressed, using NONE, for the subcategory property:

The todoapp’s complete (boolean) property renders the label to the LEFT (the default):

Moving the label to the RIGHT looks like:

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

154

ugvw.pdf
http://github.com/isisaddons/isis-app-todoapp
http://github.com/isisaddons/isis-app-todoapp
images/reference-annotations/PropertyLayout/labelPosition-LEFT.png
images/reference-annotations/PropertyLayout/labelPosition-TOP.png
images/reference-annotations/PropertyLayout/labelPosition-NONE.png
images/reference-annotations/PropertyLayout/labelPosition-boolean-LEFT.png
images/reference-annotations/PropertyLayout/labelPosition-boolean-RIGHT.png
ugfun.pdf#_ugfun_object-layout_dynamic

"description": {
 "propertyLayout": {
 "labelPosition": "TOP"
 }
}



Specifying a default setting for label positions

If you want a consistent look-n-feel throughout the app, eg all property labels to
the top, then it’d be rather frustrating to have to annotate every property.

Instead, a default can be specified using a configuration property in
isis.properties:

isis.viewers.propertyLayout.labelPosition=TOP

or

isis.viewers.propertyLayout.labelPosition=LEFT

If these are not present then Apache Isis will render according to internal
defaults. At the time of writing, this means labels are to the left for all datatypes
except multiline strings.

30.4. multiLine()
The multiLine() attribute specifies that the text field for a string property should span multiple
lines. It is ignored for other property types. The attribute is also supported for parameters.

For example:

public class BugReport {
 @PropertyLayout(
 numberOfLines=10
)
 public String getStepsToReproduce() { ... }
 public void setStepsToReproduce(String stepsToReproduce) { ... }
 ...
}

Here the stepsToReproduce will be displayed in a text area of 10 rows.

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

155

rgcfg.pdf#_rgcfg_configuring-core
ugfun.pdf#_ugfun_object-layout_dynamic

"stepsToReproduce": {
 "propertyLayout": {
 "numberOfLines": 10
 }
}


If set > 1 (as would normally be the case), then the default labelPosition defaults
to TOP (rather than LEFT, as would normally be the case).

30.5. named()
The named() attribute explicitly specifies the property’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for actions,
collections, parameters, domain objects, view models and domain services.


Following the don’t repeat yourself principle, we recommend that you only use
this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

By default the name is HTML escaped. To allow HTML markup, set the related namedEscaped()
attribute to false.

For example:

public class ToDoItem {
 @PropertyLayout(
 named="Description of this <i>item</i>",
 namedEscaped=false
)
 public String getDescription() { ... }
 ...
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"description": {
 "propertyLayout": {
 "named": "Description of this <i>item</i>",
 "namedEscaped": false
 }
}


The framework also provides a separate, powerful mechanism for
internationalization.

156

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
ugfun.pdf#_ugfun_object-layout_dynamic
ugbtb.pdf#_ugbtb_i18n

30.6. renderedAsDayBefore()
The renderedAsDayBefore() attribute applies only to date properties whereby the date will be
rendered as the day before the value actually held in the domain object. It is ignored for properties
of other types. This attribute is also supported for parameters.

This behaviour might at first glance appear odd, but the rationale is to support the use case of a
sequence of instances that represent adjacent intervals of time. In such cases there would typically
be startDate and endDate properties, eg for all of Q2. Storing this as a half-closed interval — eg [1-
Apr-2015, 1-July-2015) — can substantially simplify internal algorithms; the endDate of one interval
will correspond to the startDate of the next.

However, from an end-user perspective the requirement may be to render the interval as a fully
closed interval; eg the end date should be shown as 30-Jun-2015.

This attribute therefore bridges the gap; it presents the information in a way that makes sense to an
end-user, but also stores the domain object in a way that is easy work with internally.

For example:

public class Tenancy {
 public LocalDate getStartDate() { ... }
 public void setStartDate(LocalDate startDate) { ... }
 @PropertyLayout(
 renderedAsDayBefore=true
)
 public LocalDate getEndDate() { ... }
 public void setEndDate(LocalDate EndDate) { ... }
 ...
}

As an alternative to using the annotation, the dynamic .layout.json can be used instead, eg:

"endDate": {
 "propertyLayout": {
 "renderedAsDayBefore": true
 }
}

30.7. typicalLength()
The typicalLength() attribute indicates the typical length of a string property. It is ignored for
properties of other types. The attribute is also supported for parameters.

The information is intended as a hint to the UI to determine the space that should be given to
render a particular string property. That said, note that the Wicket viewer uses the maximum
space available for all fields, so in effect ignores this attribute.

157

ugfun.pdf#_ugfun_object-layout_dynamic
ugvw.pdf

For example:

public class Customer {
 @javax.jdo.annotations.Column(length=30)
 @ParameterLayout(typicalLength=20)
 public String getFirstName() { ... }
 public void setFirstName(String firstName) { ... }
 ...
}

158

Chapter 31. @RequestScoped (javax)
The @javax.enterprise.context.RequestScoped JSR-299 CDI annotation is used to specify that a
domain service should be request-scoped rather than a singleton.

Although Apache Isis does not (currently) leverage CDI, the semantics are the same as request-
scoped service; a new instance is created for each HTTP request, reserved for the exclusive use of
all objects interacted with during that request.

One of the built-in domain services that uses this annotation is Scratchpad, intended to allow the
arbitrary sharing of data between objects. Here is the full source code of this service is:

@DomainService(
 nature = NatureOfService.DOMAIN
)
@RequestScoped
public class Scratchpad {
 private final Map<Object, Object> userData = Maps.newHashMap(); ①
 @Programmatic
 public Object get(Object key) {
 return userData.get(key); ②
 }
 @Programmatic
 public void put(Object key, Object value) {
 userData.put(key, value); ③
 }
 @Programmatic
 public void clear() {
 userData.clear(); ④
 }
}

① Provides a mechanism for each object being acted upon to pass data to the next object.

② Obtain user-data, as set by a previous object being acted upon.

③ Set user-data, for the use of a subsequent object being acted upon.

④ Clear any user data.

The vast majority of domain services in Apache Isis tend to be singletons (which requires no special
annotation); but as you can see setting up request-scoped services is very straightforward.


Behind the covers Apache Isis creates a (singleton) wrapper for the domain
service; the individual request-scoped instances are held in a thread-local of this
wrapper. One consequence of this implementation is that request-scoped
methods should not be marked as final.

159

https://jcp.org/en/jsr/detail?id=299
rgsvc.pdf#_rgsvc_api_Scratchpad

Chapter 32. @Title
The @Title annotation is used to indicate which property or properties make up the object title. If
more than one property is used, the order can be specified (using the same Dewey-decimal notation
as used by @MemberOrder) and the string to use between the components can also be specified.

For example:

public void Customer {
 @Title(sequence="1.0")
 public String getLastName() { ... } ①
 ...
 @Title(sequence="1.5", prepend=", ")
 public String getFirstName() { ... }
 ...
 @Title(sequence="1.7", append=".")
 public String getMidInitial() { ... }
 ...
}

① backing field and setters omitted

could be used to create names of the style "Bloggs, Joe K."

It is also possible to annotate reference properties; in this case the title will return the title of the
referenced object (rather than, say, its string representation).

An additional convention for @Title properties is that they are hidden in tables (in other words, it
implies @Hidden(where=Where.ALL_TABLES). For viewers that support this annotation (for example, the
Wicket viewer), this convention excludes any properties whose value is already present in the title
column. This convention can be overridden using @Hidden(where=Where.NOWHERE).

32.1. Lombok support
If Project Lombok is being used, then @Title can be specified on the backing field.

For example:

160

dg.pdf#_dg_ide_project-lombok

public void Customer {
 @Title(sequence="1.0")
 @Getter @Setter
 private String name;

 @Title(sequence="1.5", prepend=", ")
 @Getter @Setter
 private String firstName;

 @Title(sequence="1.7", append=".")
 @Getter @Setter
 private String midInitial;
}

161

Chapter 33. @ViewModel
The @ViewModel annotation, applied to a class, is the simplest way to indicate that the class is a view
model.

View models are not persisted to the database, instead their state is encoded within their identity
(ultimately represented in the URL). As such, view models are immutable.

For example:

@ViewModel
public class MyViewModel {
 public MyViewModel() {} ①
 ...
}

① must have a no-arg constructor for subsequent "recreation" by the framework.

To instantiate a view model, you can either instantiate directly using its constructor, or indirectly
using DomainObjectContainer#newTransientInstance(). If you use the former, also programmatically
call DomainObjectContainer#injectServicesInto(…) to ensure that any dependencies are injected
into the service.


Note that there is a DomainObjectContainer#newViewModelInstance(.); this is for
view models that implement ViewModel interface and can be safely ignored.

The view model’s memento will be derived from the value of the view model object’s
properties. Any <a anchor="rgant-
Property_notPersisted"><code>@Property#notPersisted()</code> properties will be excluded
from the memento, as will any <a anchor="_rgant-
Programmatic"><code>@Programmatic</code> properties. Properties that are merely hidden _are included in the memento.

Only properties supported by the configured MementoService can be used. The default
implementation supports all the value types and persisted entities.

(As of 1.8.0) there are some limitations: * view models cannot hold collections other view models
(simple properties are supported, though) * collections (of either view models or entities) are
ignored.

162

rgsvc.pdf#_rgsvc_api_MementoService

Chapter 34. @ViewModelLayout
The @ViewModelLayout annotation is identical to the @DomainObjectLayout, but is provided for
symmetry with domain objects that have been annotated using @ViewModel (rather than
@DomainObject(nature=VIEW_MODEL)).

The table below summarizes the annotation’s attributes.

Table 20. @ViewModel attributes

Attribute Values (default) Description

cssClass() Any string valid as a
CSS class

the css class that a domain class (type) should
have, to allow more targetted styling in
application.css

cssClassFa() Any valid Font
awesome icon name

specify a font awesome icon for the action’s
menu link or icon.

cssClassFaPosition() LEFT, RIGHT
(LEFT)

Currently unused.

describedAs() String. description of this class, eg to be rendered in a
tooltip.

named() String. to override the name inferred from the action’s
name in code.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

paged() Positive integer the page size for instances of this class when
rendered within a table (as returned from an
action invocation)

plural() String. the plural name of the class

For example:

@ViewModel ①
@ViewModelLayout(
 cssClass="x-analysis",
 cssClassFa="fa-piechart",
 describedAs="Analysis of todo items by category"
)
public class CategoryPieChart { ... }

① this annotation is intended for use with @ViewModel. If a view model has been specified using the
equivalent @DomainObject(nature=Nature.VIEW_MODEL), then we recommend you use
@DomainObjectLayout instead.

163

rgcfg.pdf#_rgcfg_application-specific_application-css
http://fortawesome.github.io/Font-Awesome/
http://fortawesome.github.io/Font-Awesome/


Note that there is (currently) no support for specifying UI hints for view models
through the dynamic .layout.json file (only for properties, collections and actions
are supported).

34.1. cssClass()
The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the view model. Application-specific CSS can then be used to target and
adjust the UI representation of that particular element.

This attribute can also be applied to domain objects, actions properties, collections and parameters.

For example:

@ViewModel
@ViewModelLayout(cssClass="x-analysis")
public class CategoryPieChart { ... }


The similar @ViewModelLayout#cssClassFa() annotation attribute is also used as a
hint to apply CSS, but in particular to allow Font Awesome icons to be rendered as
the icon for classes.

34.2. cssClassFa()
The cssClassFa() attribute is used to specify the name of a Font Awesome icon name, to be
rendered as the domain object’s icon.

These attribute can also be applied to domain objects to specify the object’s icon, and to actions to
specify an icon for the action’s representation as a button or menu item.

If necessary the icon specified can be overridden by a particular object instance using the
iconName() method.

For example:

@ViewModel
@ViewModelLayout(
 cssClassFa="fa-piechart"
)
public class CategoryPieChart { ... }

There can be multiple "fa-" classes, eg to mirror or rotate the icon. There is no need to include the
mandatory fa "marker" CSS class; it will be automatically added to the list. The fa- prefix can also
be omitted from the class names; it will be prepended to each if required.

The related cssClassFaPosition() attribute is currently unused for domain objects; the icon is

164

ugfun.pdf#_ugfun_object-layout_dynamic
rgcfg.pdf#_rgcfg_application-specific_application-css
http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
rgcms.pdf#_rgcms_methods_reserved_iconName

always rendered to the left.


The similar @ViewModelLayout#cssClass() annotation attribute is also used as a
hint to apply CSS, but for wrapping the representation of an object or object
member so that it can be styled in an application-specific way.

34.3. describedAs()
The describedAs() attribute is used to provide a short description of the view model to the user. In
the Wicket viewer it is displayed as a 'tool tip'. The describedAs() attribute can also be specified for
collections, properties, actions, parameters and domain objects.

For example:

@ViewModel
@ViewModelLayout(
 cssClass="x-analysis",
 cssClassFa="fa-piechart",
 describedAs="Analysis of todo items by category"
)
public class CategoryPieChart { ... }

34.4. named()
The named() attribute explicitly specifies the view model’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for actions,
collections, properties, parameters, domain objects and domain services.


Following the don’t repeat yourself principle, we recommend that you only use
this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

For example:

@ViewModel
@ViewModelLayout(
 named="PieChartAnalysis"
)
public class PieChartAnalysisViewModel {
 ...
}


The framework also provides a separate, powerful mechanism for
internationalization.

165

ugvw.pdf
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
ugbtb.pdf#_ugbtb_i18n

34.5. paged()
The paged() attribute specifies the number of rows to display in a standalone collection, as returned
from an action invocation. This attribute can also be applied to collections and domain objects.



The RestfulObjects viewer currently does not support paging. The Wicket viewer
does support paging, but note that the paging is performed client-side rather than
server-side.

We therefore recommend that large collections should instead be modelled as
actions (to allow filtering to be applied to limit the number of rows).

For example:

@ViewModel
@ViewModelLayout(paged=15)
public class OrderAnalysis {
 ...
}

It is also possible to specify a global default for the page size of standalone collections, using the
configuration property isis.viewer.paged.standalone.

34.6. plural()
When Apache Isis displays a standalone collection of several objects, it will label the collection
using the plural form of the object type.

By default the plural name will be derived from the end of the singular name, with support for
some basic English language defaults (eg using "ies" for names ending with a "y").

The plural() attribute allows the plural form of the class name to be specified explicitly. This
attribute is also supported for domain objects.

For example:

@ViewModel
@ViewModelLayout(plural="Children")
public class Child {
 ...
}

166

ugvro.pdf
ugvw.pdf
rgcfg.pdf#_rgcfg_configuring-core

Chapter 35. @XmlJavaTypeAdapter (jaxb)
The JAXB @XmlJavaTypeAdapter annotation is used with the framework-provided
PersistentEntityAdapter to instruct JAXB to serialize references to persistent entities using the
canonical OidDto complex type: the object’s type and its identifier. This is the formal XML
equivalent to the Bookmark provided by the BookmarkService.

For example:

@XmlJavaTypeAdapter(PersistentEntityAdapter.class)
public class ToDoItem ... {
 ...
}

This annotation therefore allows view models/DTOs to have references to persistent entities; a
common idiom.

For a more complete discussion of writing JAXB view models/DTOs, see this topic in the user guide.

167

rgsvc.pdf#_rgsvc_api_BookmarkService
ugbtb.pdf#_ugbtb_view-models

Chapter 36. @XmlRootElement (jaxb)
The @XmlRootElement annotation provides an alternative way to define a view model, in particular
one intended to act as a DTO for use within RestfulObjects viewer, or which contains arbitrarily
complex state.

A view model is a non-persisted domain object whose state is converted to/from a string memento.
In the case of a JAXB-annotated object this memento is its XML representation. JAXB generally
requires that the root element of the XML representation is annotated with @XmlRootElement.
Apache Isis makes this a mandatory requirement.

In comparison to using either the ViewModel interface or the @ViewModel annotation, using
@XmlRootElement has a couple of significant advantages:

• the view model can be used as a "canonical" DTO, for example when accessing data using the
RestfulObjects viewer in combination with the ContentMappingService.

This provides a stable and versioned API to access data in XML format using whatever client-
side technology may be appropriate.

• the XML graph can be as deep as required; in particular it can contain collections of other
objects.

In contrast, if the @ViewModel annotation is used then only the state of the properties (not
collections) is captured. If using ViewModel interface then arbitrary state (including that of
collections), however the programmer must write all the code by hand

The main disadvantages of using JAXB-annotated view models is that any referenced persistent
entity must be annotated with the @XmlJavaTypeAdapter, using the framework-provided
PersistentEntityAdapter. This adapter converts any references to such domain entities using the
oidDto complex type (as defined by the Apache Isis common schema): the object’s type and its
identifier.



The memento string for view models is converted into a form compatible with
use within a URL. This is performed by the UrlEncodingService, the default
implementation of which simply encodes to base 64. If the view model XML
graph is too large to be serialized to a string, then an alternative implementation
(eg which maps XML strings to a GUID, say) can be configured using the
technique described in here in the user guide.

36.1. Example
This example is taken from the (non-ASF) Isis addons' todoapp:

168

rg.pdf#_ugbtb_view-models
ugvro.pdf
rgcms.pdf#_rgcms_classes_super_ViewModel
ugvro.pdf
rgsvc.pdf#_rgsvc_spi_ContentMappingService
rgcms.pdf#_rgcms_schema-common
rgsvc.pdf#_rgsvc_spi_UrlEncodingService
rg.pdf#_ugfun_how-tos_replacing-default-service-implementations
http://github.com/isisaddons/isis-app-todoapp

@XmlRootElement(name = "toDoItemDto") ①
public class ToDoItemDto implements Dto {
 @Getter @Setter ②
 protected String description;
 @Getter @Setter
 protected String category;
 @Getter @Setter
 protected String subcategory;
 @Getter @Setter
 protected BigDecimal cost;
}

① identifies this class as a view model and defines the root element for JAXB serialization

② using Project Lombok for getters and setters

36.2. See also
Although (like any other viewmodel) a JAXB-annotated can have behaviour (actions) and UI hints,
you may wish to keep the DTO "clean", just focused on specifying the data contract.

Behaviour can therefore be provided using mixins (annotated with @Mixin), while UI events can be
used to obtain title, icons and so on.

For a more complete discussion of writing JAXB view models/DTOs, see this topic in the user guide.

169

ugbtb.pdf#_ugbtb_decoupling_mixins
rgcms.pdf#_rgcms_classes_uievent
ugbtb.pdf#_ugbtb_view-models

	Annotations
	Table of Contents
	Chapter 1. Annotations
	1.1. Other Guides
	1.2. Examples

	Chapter 2. Summary
	2.1. Core annotations
	2.2. Other Isis Annotations
	2.3. JDO Annotations
	2.4. Java EE Annotations
	2.5. Deprecated Annotations
	2.6. Incomplete/partial support

	Chapter 3. @Action
	3.1. command()
	3.2. domainEvent()
	3.3. hidden()
	3.4. invokeOn()
	3.5. publishing()
	3.6. restrictTo()
	3.7. semantics()
	3.8. typeOf()

	Chapter 4. @ActionLayout
	4.1. bookmarking()
	4.2. contributedAs()
	4.3. cssClass()
	4.4. cssClassFa()
	4.5. describedAs()
	4.6. hidden()
	4.7. named()
	4.8. position()

	Chapter 5. @Collection
	5.1. domainEvent()
	5.2. editing()
	5.3. hidden()
	5.4. notPersisted()
	5.5. typeOf()

	Chapter 6. @CollectionLayout
	6.1. cssClass()
	6.2. defaultView()
	6.3. describedAs()
	6.4. hidden()
	6.5. named()
	6.6. paged()
	6.7. render()
	6.8. sortedBy()

	Chapter 7. @Column (javax.jdo)
	7.1. Nullability
	7.2. Length for Strings
	7.3. Length/scale for BigDecimals
	7.4. Hints and Tips
	7.5. Mapping Blobs and Clobs

	Chapter 8. @Digits (javax)
	Chapter 9. @Discriminator (javax.jdo)
	Chapter 10. @DomainObject
	10.1. auditing()
	10.2. autoCompleteRepository()
	10.3. bounded()
	10.4. createdLifecycleEvent()
	10.5. editing()
	10.6. loadedLifecycleEvent()
	10.7. nature()
	10.8. persistedLifecycleEvent()
	10.9. persistingLifecycleEvent()
	10.10. objectType()
	10.11. publishing()
	10.12. removingLifecycleEvent()
	10.13. updatingLifecycleEvent()
	10.14. updatedLifecycleEvent()

	Chapter 11. @DomainObjectLayout
	11.1. bookmarking()
	11.2. cssClass()
	11.3. cssClassFa()
	11.4. cssClassUiEvent()
	11.5. describedAs()
	11.6. iconUiEvent()
	11.7. named()
	11.8. paged()
	11.9. plural()
	11.10. titleUiEvent()

	Chapter 12. @DomainService
	12.1. nature()
	12.2. repositoryFor()

	Chapter 13. @DomainServiceLayout
	13.1. menuBar()
	13.2. menuOrder()
	13.3. named()

	Chapter 14. @Facets
	Chapter 15. @HomePage
	Chapter 16. @Inject (javax)
	16.1. Alternative syntaxes
	16.2. Injecting collection of services
	16.3. Manually injecting services

	Chapter 17. @MemberGroupLayout
	Chapter 18. @MemberOrder
	Chapter 19. @Nullable (javax)
	Chapter 20. @NotPersistent (javax.jdo)
	Chapter 21. @MinLength
	Chapter 22. @Parameter
	22.1. fileAccept()
	22.2. maxLength()
	22.3. mustSatisfy()
	22.4. optionality()
	22.5. regexPattern()

	Chapter 23. @ParameterLayout
	23.1. cssClass()
	23.2. describedAs()
	23.3. labelPosition()
	23.4. multiLine()
	23.5. named()
	23.6. renderedAsDayBefore()
	23.7. typicalLength()

	Chapter 24. @PersistenceCapable (javax.jdo)
	Chapter 25. @PostConstruct (javax)
	Chapter 26. @PreDestroy (javax)
	Chapter 27. @PrimaryKey (javax.jdo)
	Chapter 28. @Programmatic
	Chapter 29. @Property
	29.1. domainEvent()
	29.2. editing()
	29.3. fileAccept()
	29.4. hidden()
	29.5. maxLength()
	29.6. mustSatisfy()
	29.7. notPersisted()
	29.8. optionality()
	29.9. regexPattern()

	Chapter 30. @PropertyLayout
	30.1. cssClass()
	30.2. describedAs()
	30.3. labelPosition()
	30.4. multiLine()
	30.5. named()
	30.6. renderedAsDayBefore()
	30.7. typicalLength()

	Chapter 31. @RequestScoped (javax)
	Chapter 32. @Title
	32.1. Lombok support

	Chapter 33. @ViewModel
	Chapter 34. @ViewModelLayout
	34.1. cssClass()
	34.2. cssClassFa()
	34.3. describedAs()
	34.4. named()
	34.5. paged()
	34.6. plural()

	Chapter 35. @XmlJavaTypeAdapter (jaxb)
	Chapter 36. @XmlRootElement (jaxb)
	36.1. Example
	36.2. See also

