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Chapter 1. Fundamentals
This guide introduces the core concepts and ideas behind Apache Isis, and tells you how to get
started with a Maven archetype.

It also describes a number of how-tos, describes how to influence the UI layout of your domain
objects (this is ultimately just a type of metadata), and it  catalogues various FAQs.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals (this guide)

• Wicket viewer

• Restful Objects viewer

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)
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Chapter 2. Core Concepts
This introductory chapter should give you a good about what Apache Isis actually is: the
fundamental ideas and principles that it builds upon, how it compares with other frameworks,
what the fundamental building blocks are for actually writing an Isis application, and what services
and features the framework provides for you to leverage in your own apps.


Parts of this chapter have been adapted from Dan Haywood’s 2009 book, 'Domain
Driven Design using Naked Objects'.  We’ve also added some new insights and
made sure the material we’ve used is relevant to Apache Isis.

2.1. Philosophy and Architecture
This section describes some of the core ideas and architectural patterns upon which Apache Isis
builds.

2.1.1. Domain-Driven Design

There’s no doubt that we developers love the challenge of understanding and deploying complex
technologies. But understanding the nuances and subtleties of the business domain itself is just as
great a challenge, perhaps more so. If we devoted our efforts to understanding and addressing
those subtleties, we could build better, cleaner, and more maintainable software that did a better
job for our stakeholders. And there’s no doubt that our stakeholders would thank us for it.

A couple of years back Eric Evans wrote his book Domain-Driven Design, which is well on its way to
becoming a seminal work. In fact, most if not all of the ideas in Evans' book have been expressed
before, but what he did was pull those ideas together to show how predominantly object-oriented
techniques can be used to develop rich, deep, insightful, and ultimately useful business
applications.

There are two central ideas at the heart of domain-driven design.

• the ubiquitous language is about getting the whole team (both domain experts and
developers) to communicate more transparently using a domain model.

• Meanwhile, model-driven design is about capturing that model in a very straightforward
manner in code.

Let’s look at each in turn.

Ubiquitous Language

It’s no secret that the IT industry is plagued by project failures. Too often systems take longer than
intended to implement, and when finally implemented, they don’t address the real requirements
anyway.

Over the years we in IT have tried various approaches to address this failing. Using waterfall
methodologies, we’ve asked for requirements to be fully and precisely written down before starting
on anything else. Or, using agile methodologies, we’ve realized that requirements are likely to
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change anyway and have sought to deliver systems incrementally using feedback loops to refine
the implementation.

But let’s not get distracted talking about methodologies. At the end of the day what really matters is
communication between the domain experts (that is, the business) who need the system and the
techies actually implementing it. If the two don’t have and cannot evolve a shared understanding of
what is required, then the chance of delivering a useful system will be next to nothing.

Bridging this gap is traditionally what business analysts are for; they act as interpreters between
the domain experts and the developers. However, this still means there are two (or more)
languages in use, making it difficult to verify that the system being built is correct. If the analyst
mistranslates a requirement, then neither the domain expert nor the application developer will
discover this until (at best) the application is first demonstrated or (much worse) an end user
sounds the alarm once the application has been deployed into production.

Rather than trying to translate between a business language and a technical language, with  DDD
we aim to have the business and developers using the same terms for the same concepts in order to
create a single domain model. This domain model identifies the relevant concepts of the domain,
how they relate, and ultimately where the responsibilities are. This single domain model provides
the vocabulary for the  ubiquitous language for our system.

Ubiquitous Language

Build a common language between the domain experts and developers by using the concepts
of the domain model as the primary means of communication. Use the terms in speech, in
diagrams, in writing, and when presenting.

If an idea cannot be expressed using this set of concepts, then go back and extend the model.
Look for and remove ambiguities and inconsistencies.

Creating a  ubiquitous language calls upon everyone involved in the system’s development to
express what they are doing through the vocabulary provided by the model. If this can’t be done,
then our model is incomplete. Finding the missing words deepens our understanding of the domain
being modeled.

This might sound like nothing more than me insisting that the developers shouldn’t use jargon
when talking to the business. Well, that’s true enough, but it’s not a one-way street. A  ubiquitous
language demands that the developers work hard to understand the problem domain, but it also
demands that the business works hard in being  precise in its naming and descriptions of those
concepts. After all, ultimately the developers will have to express those concepts in a computer
programming language.

Also, although here I’m talking about the "domain experts" as being a homogeneous group of
people, often they may come from different branches of the business. Even if we weren’t building a
computer system, there’s a lot of value in helping the domain experts standardize their own
terminology. Is the marketing department’s "prospect" the same as sales' "customer," and is that the
same as an after-sales "contract"?
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The need for precision within the  ubiquitous language also helps us scope the system. Most
business processes evolve piecemeal and are often quite ill-defined. If the domain experts have a
very good idea of what the business process should be, then that’s a good candidate for automation,
that is, including it in the scope of the system. But if the domain experts find it hard to agree, then
it’s probably best to leave it out. After all, human beings are rather more capable of dealing with
fuzzy situations than computers.

So, if the development team (business and developers together) continually searches to build their
ubiquitous language, then the domain model naturally becomes richer as the nuances of the
domain are uncovered. At the same time, the knowledge of the business domain experts also
deepens as edge conditions and contradictions that have previously been overlooked are explored.

We use the  ubiquitous language to build up a domain model. But what do we do  with that model?
The answer to that is the second of our central ideas.

Model-Driven Design

Of the various methodologies that the IT industry has tried, many advocate the production of
separate analysis models and implementation models. One example (from the mid 2000s) was that
of the  OMG's Model-Driven Architecture ( MDA) initiative, with its platform-independent model
(the  PIM) and a platform-specific model (the  PSM).

Bah and humbug! If we use our  ubiquitous language just to build up a high-level analysis model,
then we will re-create the communication divide. The domain experts and business analysts will
look only to the analysis model, and the developers will look only to the implementation model.
Unless the mapping between the two is completely mechanical, inevitably the two will diverge.

What do we mean by  model anyway? For some, the term will bring to mind  UML class or
sequence diagrams and the like. But this isn’t a model; it’s a visual  representation of some aspect
of a model. No, a domain model is a group of related concepts, identifying them, naming them, and
defining how they relate. What is in the model depends on what our objective is. We’re not looking
to simply model everything that’s out there in the real world. Instead, we want to take a relevant
abstraction or simplification of it and then make it do something useful for us.  A model is neither
right nor wrong, just more or less useful.

For our  ubiquitous language to have value, the domain model that encodes it must have a
straightforward, literal representation to the design of the software, specifically to the
implementation. Our software’s design should be driven by this model; we should have a model-
driven design.

Model-Driven Design

There must be a straightforward and very literal way to represent the domain model in terms
of software. The model should balance these two requirements: form the  ubiquitous
language of the development team and be representable in code.

Changing the code means changing the model; refining the model requires a change to the
code.
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Here also the word  design might mislead; some might be thinking of design documents and design
diagrams, or perhaps of user interface (UX) design. But by  design we mean a way of organizing the
domain concepts, which in turn leads to the way in which we organize their representation in code.

Luckily, using object-oriented (OO) languages such as Java, this is relatively easy to do;  OO is based
on a modeling paradigm anyway. We can express domain concepts using classes and interfaces, and
we can express the relationships between those concepts using associations.

So far so good. Or maybe, so far so much motherhood and apple pie. Understanding the  DDD
concepts isn’t the same as being able to apply them, and some of the  DDD ideas can be difficult to
put into practice. Time to discuss the naked objects pattern and how it eases that path by applying
these central ideas of DDD in a very concrete way.

2.1.2. Naked Objects Pattern

Apache Isis implements the naked objects pattern, originally formulated by Richard Pawson.  So
who better than Richard to explain the origination of the idea?

<div class="extended-quote-first"><p>The Naked Objects pattern arose, at least in part, from my
own frustration at the lack of success of the domain-driven approach. Good examples were hard to
find&#8212;&#8203;as they are still. </p></div>

<div class="extended-quote"><p>A common complaint from <em>DDD</em> practitioners was that
it was hard to gain enough commitment from business stakeholders, or even to engage them at all.
My own experience suggested that it was nearly impossible to engage business managers with UML
diagrams.  It was much easier to engage them in rapid prototyping&#8201;&#8212;&#8201;where
they could see and interact with the results&#8201;&#8212;&#8201;but most forms of rapid
prototyping concentrate on the presentation layer, often at the expense of the underlying model
and certainly at the expense of abstract thinking. </p></div>

<div class="extended-quote"><p>Even if you could engage the business sponsors sufficiently to
design a domain model, by the time you&#8217;d finished developing the system on top of the
domain model, most of its benefits had disappeared. It&#8217;s all very well creating an agile
domain object model, but if any change to that model also dictates the modification of one or more
layers underneath it (dealing with persistence) and multiple layers on top (dealing with
presentation), then that agility is practically worthless. </p></div>

<div class="extended-quote"><p>The other concern that gave rise to the birth of Naked Objects was
how to make user interfaces of mainstream business systems more
"expressive"&#8201;&#8212;&#8201;how to make them feel more like using a drawing program or
<em>CAD</em> system. Most business systems are not at all expressive; they treat the user merely
as a dumb <strong>process-follower</strong>, rather than as an empowered <strong>problem-
solver</strong>.  Even the so-called usability experts had little to say on the subject: try finding the
word "empowerment" or any synonym thereof in the index of any book on usability. Research had
demonstrated that the best way to achieve expressiveness was to create an object-oriented user
interface (<em>OOUI</em>). In practice, though, <em>OOUI</em>s were notoriously hard to
develop. </p></div>

<div class="extended-quote"><p>Sometime in the late 1990s, it dawned on me that if the domain
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model really did represent the "ubiquitous language" of the business and those domain objects
were behaviorally rich (that is, business logic is encapsulated as methods on the domain objects
rather than in procedural scripts on top of them), then the <em>UI</em> could be nothing more
than a reflection of the user interface. This would solve both of my concerns. It would make it
easier to do domain-driven design, because one could instantly translate evolving domain modeling
ideas into a working prototype. And it would deliver an expressive, object-oriented user interface
for free. Thus was born the idea of Naked Objects. </p></div>

<div class="extended-quote-attribution"><p>-- Richard Pawson </p></div>

You can learn much more about the pattern in the book, Naked Objects, also freely available to read
online.  Richard co-wrote the book with one of Apache Isis' committers, Robert Matthews, who was
in turn the author of the Naked Objects Framework for Java (the original codebase of of Apache
Isis).

You might also want to read Richard’s PhD on the subject.



One of the external examiners for Richard’s PhD was Trygve Reenskaug, who
originally formulated the MVC pattern at Xeroc PARC.  In his paper, Baby UML,
Reenskaug describes that when implemented the first MVC, "the conventional
wisdom in the group was that objects should be visible and tangible, thus
bridging the gap between the human brain and the abstract data within the
computer."  Sound familiar?  It’s interesting to speculate what might have been if
this idea had been implemented back then in the late 70s.

Reenskaug then goes on to say that "this simple and powerful idea failed because
… users were used to seeing [objects] from different perspectives. The visible and
tangible object would get very complex if it should be able to show itself and be
manipulated in many different ways."

In Apache Isis the responsibility of rendering an object is not the object itself, it is
the framework.  Rather, the object inspects the object and uses that to decide how
to render the object.  This is also extensible.  In the Isis Addons (non-ASF) the Isis
addons' gmap3 wicket extension renders any object with latitude/longitude on a
map, while Isis addons' fullcalendar2 wicket extension renders any object with
date(s) on a calendar.

Object Interface Mapping

Another — more technical — way to think about the naked objects pattern is as an object interface
mapper, or OIM.  We sometimes use this idea to explain naked objects to a bunch of developers.

Just as an ORM (such as DataNucleus or Hibernate) maps domain entities to a database, you can
think of the naked objects pattern as representing the concept of mapping domain objects to a user
interface.

This is the way that the MetaWidget team, in particular Richard Kennard, the primary contributor,
likes to describe their tool.  MetaWidget has a number of ideas in common with Apache Isis,
specifically the runtime generation of a UI for domain objects.  You can hear more from Kennard
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and others on this Javascript Jabber podcast.

 We compare Apache Isis' with MetaWidget here.

What this means in practice

This screencast shows what all of this means in practice, showing the relationship between a
running app and the actual code underneath.


This screencast shows Apache Isis v1.0.0, Jan 2013.  The UI has been substantially
refined since that release.

2.1.3. Hexagonal Architecture

One of the patterns that Evans discusses in his book is that of a layered architecture.  In it he
describes why the domain model lives in its own layer within the architecture. The other layers of
the application (usually presentation, application, and persistence) have their own responsibilities,
and are completely separate.  Each layer is cohesive and depending only on the layers below.  In
particular, we have a layer dedicated to the domain model. The code in this layer is unencumbered
with the (mostly technical) responsibilities of the other layers and so can evolve to tackle complex
domains as well as simple ones.

This is a well-established pattern, almost a de-facto; there’s very little debate that these
responsibilities should be kept separate from each other.  With Apache Isis the responsibility for
presentation is a framework concern, the responsibility for the domain logic is implemented by the
(your) application code.

A few years ago Alistair Cockburn reworked the traditional layered architecture diagram and came
up with the hexagonal architecture:.


The hexagonal architecture is also known as the Ports and Adapters architecture
or (less frequently) as the Onion architecture.
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Figure 1. The hexagonal architecture emphasizes multiple implementations of the different layers.

What Cockburn is emphasizing is that there’s usually more than one way into an application (what
he called the user-side' ports) and more than one way  out of an application too (the data-side
ports). This is very similar to the concept of primary and secondary actors in use cases: a primary
actor (often a human user but not always) is active and initiates an interaction, while a secondary
actor (almost always an external system) is passive and waits to be interacted with.

Associated with each port can be an adapter (in fact, Cockburn’s alternative name for this
architecture is ports and adapters). An adapter is a device (piece of software) that talks in the
protocol (or  API) of the port. Each port could have several adapters.

Apache Isis maps very nicely onto the  hexagonal architecture.  Apache Isis' viewers act as user-
side adapters and use the Apache Isis metamodel API as a port into the domain objects.   For the
data side, we are mostly concerned with persisting domain objects to some sort of object store.
Here Apache Isis delegates most of the heavy lifting to ORM implementing the JDO API.  Most of the
time this will be DataNucleus configured to persist to an RDBMS, but DataNucleus can also support
other object stores, for example Neo4J.  Alternatively Apache Isis can be configured to persist using
some other JDO implementation, for example Google App Engine.

2.1.4. Aspect Oriented

Although not a book about object modelling, Evans' "Domain Driven Design" does use object
orientation as its primary modelling tool; while naked objects pattern very much comes from an
OO background (it even has 'object' in its name); Richard Pawson lists Alan Kay as a key influence.

It’s certainly true that to develop an Apache Isis application you will need to have good object
oriented modelling skills.  But given that all the mainstream languages for developing business
systems are object oriented (Java, C#, Ruby), that’s not such a stretch.

However, what you’ll also find as you write your applications is that in some ways an Isis
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application is more aspect-oriented than it is object oriented.  Given that aspect-orientation — as a
programming paradigm at least — hasn’t caught on, that statement probably needs unpacking a
little.

AOP Concepts

Aspect-orientation, then, is a different way of decomposing your application, by treating cross-
cutting concerns as a first-class citizen.  The canonical (also rather boring) example of a cross-
cutting concern is that of logging (or tracing) all method calls.  An aspect can be written that will
weave in some code (a logging statement) at specified points in the code).

This idea sounds rather abstract, but what it really amounts to is the idea of interceptors.  When
one method calls another the AOP code is called in first.  This is actually then one bit of AOP that is
quite mainstream; DI containers such as Spring provide aspect orientation in supporting
annotations such as @Transactional or @Secured to java beans.

Another aspect (ahem!) of aspect-oriented programming has found its way into other programming
languages, that of a mix-in or trait.  In languages such as Scala these mix-ins are specified statically
as part of the inheritance hierarchy, whereas with AOP the binding of a trait to some other
class/type is done without the class "knowing" that additional behaviour is being mixed-in to it.

Realization within Apache Isis

What has all this to do with Apache Isis, then?

Well, a different way to think of the naked objects pattern is that the visualization of a domain
object within a UI is a cross-cutting concern.  By following certain very standard programming
conventions that represent the Apache Isis Programming Model (POJOs plus annotations), the
framework is able to build a metamodel and from this can render your domain objects in a
standard generic fashion.  That’s a rather more interesting cross-cutting concern than boring old
logging!

Isis also draws heavily on the AOP concept of interceptors.  Whenever an object is rendered in the
UI, it is filtered with respect to the user’s permissions.  That is, if a user is not authorized to either
view or perhaps modify an object, then this is applied transparently by the framework.  The Isis
addons' security module, mentioned previously, provides a rich user/role/permissions subdomain
to use out of the box; but you can integrate with a different security mechanism if you have one
already.

Another example of interceptors are the Isis addons' command and Isis addons' audit modules.  The
command module captures every user interaction that modifies the state of the system (the "cause"
of a change) while the audit module captures every change to every object (the "effect" of a change).
Again, this is all transparent to the user.

Apache Isis also has an internal event bus (you can switch between an underlying implementation
of Gauva or Axon).  A domain event is fired whenever an object is interacted with, and this allows
any subscribers to influence the operation (or even veto it).  This is a key mechanism in ensuring
that Isis applications are maintainable, and we discuss it in depth in the section on  Decoupling.
But fundamentally its relying on this AOP concept of interceptors.
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Finally, Isis also a feature that is akin to AOP mix-ins.  A "contributed action" is one that is
implemented on a domain service but that appears to be a behaviour of rendered domain object.
In other words, we can dissociate behaviour from data.  That’s not always the right thing to do of
course.  In Richard Pawson’s description of the naked objects pattern he talks about "behaviourally
rich" objects, in other words where the business functionality encapsulated the data.   But on the
other hand sometimes the behaviour and data structures change at different rates.  The single
responsibility principle says we should only lump code together that changes at the same rate.
Apache Isis' support for contributions (not only contributed actions, but also contributed properties
and contributed collections) enables this.  And again, to loop back to the topic of this section, it’s an
AOP concept that being implemented by the framework.

The nice thing about aspect orientation is that for the most part you can ignore these cross-cutting
concerns and - at least initially at least - just focus on implementing your domain object.  Later
when your app starts to grow and you start to break it out into smaller modules, you can leverage
Apache Isis' AOP support for (mixins), (contributions) and interceptors (the event bus) to ensure
that your codebase remains maintainable.

2.1.5. How Apache Isis eases DDD

The case for  DDD might be compelling, but that doesn’t necessarily make it easy to do. Let’s take a
look at some of the challenges that  DDD throws up and see how Apache Isis (and its
implementation of the naked objects pattern) helps address them.

DDD takes a conscious effort

Here’s what Eric Evans says about ubiquitous language:

<div class="extended-quote-first"><p>With a conscious effort by the [development] team the
domain model can provide the backbone for [the] common [ubiquitous]
language&#8230;&#8203;connecting team communication to the software implementation."
</p></div>

<div class="extended-quote-attribution"><p>-- Eric Evans </p></div>

The word to pick up on here is conscious.  It takes a conscious effort by the entire team to develop
the ubiquitous language. Everyone in the team must challenge the use of new or unfamiliar terms,
must clarify concepts when used in a new context, and in general must be on the lookout for sloppy
thinking. This takes willingness on the part of all involved, not to mention some practice.

With Apache Isis, though, the  ubiquitous language evolves with scarcely any effort at all. For the
business experts, the Apache Isis viewers show the domain concepts they identify and the
relationships between those concepts in a straightforward fashion. Meanwhile, the developers can
devote themselves to encoding those domain concepts directly as domain classes. There’s no
technology to get distracted by; there is literally nothing else for the developers to work on.

DDD must be grounded

Employing a  model-driven design isn’t necessarily straightforward, and the development processes
used by some organizations positively hinder it. It’s not sufficient for the business analysts or
architects to come up with some idealized representation of the business domain and then chuck it
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over the wall for the programmers to do their best with.

Instead, the concepts in the model must have a very literal representation in code. If we fail to do
this, then we open up the communication divide, and our  ubiquitous language is lost. There is
literally no point having a domain model that cannot be represented in code. We cannot invent our
ubiquitous language in a vacuum, and the developers must ensure that the model remains
grounded in the doable.

In Apache Isis, we have a very pure one-to-one correspondence between the domain concepts and
its implementation. Domain concepts are represented as classes and interfaces, easily
demonstrated back to the business. If the model is clumsy, then the application will be clumsy too,
and so the team can work together to find a better implementable model.

Model must be understandable

If we are using code as the primary means of expressing the model, then we need to find a way to
make this model understandable to the business.

We could generate UML diagrams and the like from code. That will work for some members of the
business community, but not for everyone. Or we could generate a PDF document from Javadoc
comments, but comments aren’t code and so the document may be inaccurate.  Anyway, even if we
do create such a document, not everyone will read it.

A better way to represent the model is to show it in action as a working prototype. As we show in
the Getting Started section, Apache Isis enables this with ease. Such prototypes bring the domain
model to life, engaging the audience in a way that a piece of paper never can.

Moreover, with Apache Isis prototypes, the domain model will come shining through. If there are
mistakes or misunderstandings in the domain model (inevitable when building any complex
system), they will be obvious to all.

Architecture must be robust

DDD rightly requires that the domain model lives in its own layer within the architecture. The other
layers of the application (usually presentation, application, and persistence) have their own
responsibilities, and are completely separate.

However, there are two immediate issues. The first is rather obvious: custom coding each of those
other layers is an expensive proposition. Picking up on the previous point, this in itself can put the
kibosh on using prototyping to represent the model, even if we wanted to do so.

The second issue is more subtle. It takes real skill to ensure the correct separation of concerns
between these layers, if indeed you can get an agreement as to what those concerns actually are.
Even with the best intentions, it’s all too easy for custom-written layers to blur the boundaries and
put (for example) validation in the user interface layer when it should belong to the domain layer.
At the other extreme, it’s quite possible for custom layers to distort or completely subvert the
underlying domain model.

Because of Apache Isis' generic  OOUIs, there’s no need to write the other layers of the architecture.
Of course, this reduces the development cost. But more than that, there will be no leakage of
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concerns outside the domain model. All the validation logic must be in the domain model because
there is nowhere else to put it.

Moreover, although Apache Isis does provide a complete runtime framework, there is no direct
coupling of your domain model to the framework. That means it is very possible to take your
domain model prototyped in Naked Objects and then deploy it on some other  J(2)EE architecture,
with a custom UI if you want.  Apache Isis guarantees that your domain model is complete.

Extending the reach of DDD

Domain-driven design is often positioned as  being applicable only to complex domains; indeed, the
subtitle of Evans book is  "Tackling Complexity in the Heart of Software". The corollary is that DDD
is overkill for simpler domains. The trouble is that we immediately have to make a choice: is the
domain complex enough to warrant a domain-driven approach?

This goes back to the previous point, building and maintaining a layered architecture. It doesn’t
seem cost effective to go to all the effort of a DDD approach if the underlying domain is simple.

However, with Apache Isis, we don’t write these other layers, so we don’t have to make a call on
how complex our domain is. We can start working solely on our domain, even if we suspect it will
be simple. If it is indeed a simple domain, then there’s no hardship, but if unexpected subtleties
arise, then we’re in a good position to handle them.

If you’re just starting out writing domain-driven applications, then Apache Isis should significantly
ease your journey into applying DDD. On the other hand, if you’ve used DDD for a while, then you
should find Isis a very useful new tool in your arsenal.

2.2. Principles and Values
This section describes some of the core principles and values that the framework aims to honour
and support.

The first of these relate to how we believe your domain application should be written: it should be
decoupled, testable and so on).  Others relate to the implementation of the framework itself.

The section concludes by contrasting the framework with some other open source frameworks
commonly used.

2.2.1. Your Applications

Apache Isis is primarily aimed at custom-built "enterprise" applications.  The UI exposed by the
Wicket viewer is intended to be usable by domain experts, typically end-users within the
organization.  The REST API exposed by the RestfulObjects viewer allows custom apps to be
developed - eg using AngularJS or similar - for use by those requiring more guidance; typically end-
users outside of the organization.

But should your organization buy, or build?  Buying packaged software makes sense for statutory
requirements, such as payroll or general ledger, or document management/retrieval.  But it makes
much less sense to buy packaged software for the systems that support the core business: the
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software should fit the business, not the other way around.

 TODO - flesh out the following:

• Flexible, "just enough"

• Decoupled

• Long-term Cost of ownership

• dependency injection of services

• OO design techniques, eg dependency inversion principle

• an in-memory event bus

• applib

• (no "Big Ball of Mud")

• Honouring the Single Responsibility Principle

• behaviourally Complete vs Contributions/Mixins

• Testable

While Apache Isis can be used (very effectively) for simple CRUD-style applications, it is also
intended to be used for complex business domains.  Ensuring that the business logic in such
applications is correct means that the framework must (and does) provide robust testing
support, both for developer-level unit testing and business-level (end-to-end) integration testing.

• Reusable building blocks

Isis addons, catalog.incode.org

2.2.2. Apache Isis itself

This section discusses some of the principles and values we apply to the development of the Apache
Isis framework itself.

Full-stack but Extensible

 TODO

Focuses on its USP

 TODO

add-ons

• Apache Isis is at heart a metamodel with runtime, and coordinates interations using an AOP set
of principles

• Apache Isis vs Isis Addons
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• Apache Isis vs Shiro vs DataNucleus

i. all code has legacy in it…. parts of the Isis codebase are well over a decade old; and back
then a lot of the JEE technologies that we’d like to be using just didn’t exist, so we had to
invent the features we required ourselves.

ii. also, Apache Isis today is more pragmatic than previously

• a client/server solution, with AWT-based client

• a HTML browser, Scimpi (JSF-like, but not using JSF), …

• security

• objectstores

We’re working hard to remove duplication, reuse existing open source/JEE, and simplify.

The areas of Apache Isis we consider mature are those that have been developed in support of real-
world applications implemented by the committers.  Foremost among these is Estatio.

Focus on enterprise / line-of-business applications, for use by internal staff.

• problem solvers, not process followers

• view models

2.2.3. Apache Isis vs …

Many other frameworks promise rapid application development and provide automatically
generated user interfaces, so how do they compare to Apache Isis?

vs MVC server-side frameworks

Some of most commonly used frameworks today are Spring MVC, Ruby on Rails and Grails, all of
which implement one flavour or another of the server-side MVC pattern.  The MVC 1.0 specification
(scheduled for JavaEE 8) is also similar.

These frameworks all use the classic  model-view-controller ( MVC) pattern for web applications,
with scaffolding, code-generation, and/or metaprogramming tools for the controllers and views, as
well as convention over configuration to define how these components interact.  The views
provided out of the box by these frameworks tend to be simple  CRUD-style interfaces. More
sophisticated behavior is accomplished by customizing the generated controllers.

The most obvious difference when developing an Apache Isis application is its deliberate lack of an
explicit controller layer; non- CRUD behavior is automatically made available in its generic object-
oriented  _UI_s.  More sophisticated UIs can be built either by extending Apache Isis' Wicket viewer
or by writing a bespoke UI leveraging the REST (hypermedia) API automatically exposed by Isis'
Restful Objects viewer.  Other frameworks can also be used to implement REST APIs, of course, but
generally they require a significant amount of development to get anywhere near the level of
sophistication provided automatically by Apache Isis' REST API.

Although these frameworks all provide their own ecosystems of extensions, Apache Isis' equivalent
Isis Addons (non-ASF) tend to work at a higher-level of abstraction.  For example, each of these
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frameworks will integrate with various security mechanism, but the Isis addons' security module
provides a full subdomain of users, roles, features and permissions that can be plugged into any Isis
application.  Similarly, the Isis addons' command and Isis addons' audit modules in combination
provide a support for auditing and traceability that can also be used for out of the box profiling.
Again, these addons can be plugged into any Isis app.

In terms of testing support, each of these other frameworks provide mechanisms to allow the
webapp to be tested from within a JUnit test harness. Apache Isis' support is similar.  Where Apache
Isis differs though is that it enables end-to-end testing without the need for slow and fragile
Selenium tests. Instead, Apache Isis provides a "WrapperFactory" domain service that allows the
generic UI provided to in essence be simulated. On a more pragmatic level, the Isis addons' fakedata
module does "what it says on the tin", allowing both unit- and integration-tests to focus on the
salient data and fake out the rest.

vs CQRS

The CQRS architectural pattern (it stands for "Command Query Responsbility Separation") is the
idea that the domain objects that mutate the state of the system - to which commands are sent and
which then execute - should be separated from the mechanism by which the state of the system is
queried (rendered).  The former are sometimes called the "write (domain) model", the latter the
"read model".

In the canonical version of this pattern there are separate datastores.  The commands act upon a
command/write datastore.  The data in this datastore is then replicated in some way to the
query/read datastore, usually denormalized or otherwise such that it is easy to query.  CQRS
advocates recommend using very simple (almost naive) technology for the query/read model; it
should be a simple projection of the query datastore.  Complexity instead lives elsewhere: business
logic in the command/write model, and in the transformation logic betweeen the command/write
and read/query datastores.  In particular, there is no requirement for the two datastores to use the
same technology: one might be an RDBMS while the other a NoSQL datastore or even
datawarehouse.

In most implementations the command and query datastores are not updated in the same
transaction; instead there is some sort of replication mechanism.  This also means that the query
datastore is eventually consistent rather than always consistent; there could be a lag of a few
seconds before it is updated.  This means in turn that CQRS implementations require mechanisms
to cater for offline query datastores; usually some sort of event bus.

The CQRS architecture’s extreme separation of responsibilities can result in a lot of boilerplate.
Any given domain concept, eg Customer, must be represented both in the command/write model and
also in the query/read model.  Each business operation upon the command model is reified as a
command object, for example PlaceOrderCommand.

Comparing CQRS to Apache Isis, the most obvious difference is that Apache Isis does not separate
out a command/write model from a query/read model, and there is usually just a single datastore.
But then again, having a separate read model just so that the querying is very straightforward is
pointless with Apache Isis because, of course, Isis provides the UI "for free".

There are other reasons though why a separate read model might make sense, such as to
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precompute particular queries, or against denormalized data.  In these cases Apache Isis can often
provide a reasonable alternative, namely to map domain entities against RDBMS views, either
materialized views or dynamic.  In such cases there is still only a single physical datastore, and so
transactional integrity is retained.

Or, the CQRS architecture can be more fully implemented with Apache Isis by introducing a
separate read model, synchronized using the PublishingService, or using subscribers  on the
EventBusService.  One can then use view models to surface the data in the external read datastore.

With respect to commands, Apache Isis does of course support the CommandService which allows
each business action to be reified into a Command.  However, names are misleading here: Apache Isis'
commands are relatively passive, merely recording the intent of the user to invoke some operation.
In a CQRS architecture, though, commands take a more active role, locating and acting upon the
domain objects.  More significantly, in CQRS each command has its own class, such as
PlaceOrderCommand, instantiated by the client and then executed.  With Apache Isis, though, the end-
user merely invokes the placeOrder(…) action upon the domain object; the framework itself creates
the Command as a side-effect of this.

In CQRS the commands correspond to the business logic that mutates the system.  Whether this
logic is part of the command class (PlaceOrderCommand) or whether that command delegates to
methods on the domain object is an implementation detail; but it certainly is common for the
business logic to be wholly within the command object and for the domain object to be merely a
data holder of the data within the command/write datastore.

In Apache Isis this same separation of business logic from the underlying data can be accomplished
most straightforwardly using mixins or contributions.  In the UI (surfaced by the Wicket viewer) or
in the REST API (surfaced by the RestfulObjects viewer) the behaviour appears to reside on the
domain object; however the behaviour actually resides on separate classes and is mixed in (like a
trait) only at runtime.

vs Event Sourcing

The CQRS architecture, discussed above, is often combined with Event Sourcing pattern, though
they are separate ideas.

With event sourcing, each business operation emits a domain event (or possibly events) that allow
other objects in the system to act accordingly.  For example, if a customer places an order then this
might emit the OrderPlacedEvent.  Most significantly, the subscribers to these events can include the
datastore itself; the state of the system is in effect a transaction log of every event that has occurred
since "the beginning of time": it is sometimes called an event store.   With CQRS, this event
datastore corresponds to the command/write datastore (the query/read datastore is of course
derived from the command datastore).

Although it might seem counter-intuitive to be able store persistent state in this way (as a souped
up "transaction log"), the reality is that with modern compute capabilities make it quite feasible to
replay many 10s/100s of thousands of events in a second.  And the architecture supports some
interesting use cases; for example it becomes quite trivial to rewind the system back to some
previous point in time.

When combined with CQRS we see a command that triggers a business operation, and an event that
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results from it.  So, a PlaceOrderCommand command can result in an OrderPlacedEvent event.  A
subscriber to this event might then generate a further command to act upon some other system (eg
to dispatch the system).  Note that the event might be dispatched and consumed in-process or
alternatively this might occur out-of-process.  If the latter, then the subscriber will operate within a
separate transaction, meaning the usual eventual consistency concerns and also compensating
actions if a rollback is required.  CQRS/event sourcing advocates point out - correctly  that this is
just how things are in the "real world" too.

In Apache Isis every business action (and indeed, property and collection) emits domain events
through the EventBusService , and can optionally also be published through the PublishingService.
The former are dispatched and consumed in-process and within the same transaction, and for this
reason the subscribers can also veto the events.  The latter are intended for out-of-process
consumption; the (non-ASF) Isis addons' publishing and Isis addons' publishmq modules provide
implementations for dispatching either through a RDBMS database table, or directly through to an
ActiveMQ message queue (eg wired up to Apache Camel event bus).

vs MetaWidget

MetaWidget (mentioned earlier has a number of ideas in common with Apache Isis, specifically the
runtime generation of a UI for domain objects.  And like Apache Isis, MetaWidget builds its own
metamodel of the domain objects and uses this to render the object.

However, there is a difference in philosophy in that MW is not a full-stack framework and does not
(in their words) try to "own the UI".  Rather they support a huge variety of UI technologies and
allow the domain object to be rendered in any of them.

In contrast, Apache Isis is full-stack and does generate a complete UI; we then allow you to
customize or extend this UI (as per the various Isis Addons (non-ASF), and we also provide a full
REST API through the Restful Objects viewer

Also, it’s worth noting that MetaWidget does have an elegant pipeline architecture, with APIs to
allow even its metamodel to be replaced.  It would be feasible and probably quite straightforward
to use Apache Isis' own metamodel as an implementation of the MetaWidget API.  This would allow
MetaWidget to be able to render an Apache Isis domain application.

2.3. Building Blocks
In this section we run through the main building blocks that make up an Apache Isis application.

2.3.1. A MetaModel

At its core, Apache Isis is a metamodel that is built at runtime from the domain classes (eg
Customer.java), along with optional supporting metadata (eg Customer.layout.json).

The contents of this metamodel is inferred from the Java classes discovered on the classpath: the
entities and supporting services, as well the members of those classes.  The detail of the metamodel
is generally explicit, usually represented by Java annotations such as @Title or @Action.  Notably the
metamodel is extensible; it is possible to teach Apache Isis new programming conventions/rules
(and conversely to remove those that are built in).
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Most of the annotations recognized by the framework are defined by the Apache Isis framework
itself.  For example the @Title annotation - which identifies how the framework should derive a
human-readable label for each rendered domain object - is part of the
org.apache.isis.applib.annotations package.  However the framework also recognizes certain
other JEE annotations such as @javax.inject.Inject (used for dependency injection).

The framework uses DataNucleus for its persistence mechanism.  This is an ORM that implements
the JDO and JPA APIs, and which can map domain objects either to an RDBMS or to various NoSQL
objectstores such as MongoDB or Neo4J.  Apache Isis recognizes a number of the JDO annotations
such as @javax.jdo.annotations.Column(allowNulls=…).

In addition, the framework builds up the metamodel for each domain object using layout hints,
such as Customer.layout.json.  These provide metadata such as grouping elements of the UI
together, using multi-column layouts, and so on.  The layout file can be modified while the
application is still running, and are picked up automatically; a useful way to speed up feedback.


At the time of writing Apache Isis only recognizes and supports the JDO API,
though we expect JPA to be supported in the future.  We also expect to generalize
support for .layout.json to be able to read such metadata from other sources.

2.3.2. Type of Domain Objects

Most domain objects that the end-user interacts with are domain entities, such as Customer, Order,
Product and so on.  These are persistent objects and which are mapped to a database (usually
relational), using JDO/DataNucleus annotations.  From the end-user’s perspective the UI displays a
single domain object per page; they can then inspect and modify its state, and navigate to related
objects.

The next type of domain object to discuss is domain services.  These are (usually) singleton
stateless services that provide additional functionality.  The behaviour of these services is rendered
in various ways, though the most obvious is as the menu actions on the top-level menu bars in the
Wicket viewer's UI.

Domain objects can also delegate to domain services; domain services are automatically injected
into every other domain object; this includes domain entities as well as other services.  This
injection of domain services into entities is significant: it allows business logic to be implemented in
the domain entities, rather than have it "leach away" into supporting service layers.  Said another
way: it is the means by which Apache Isis helps you avoid the anaemic domain model anti-pattern.

As well as domain entities - mapped to a datastore - Apache Isis also supports view models.  End
users interact with view models in the same way as a domain entity, indeed they are unlikely to
distinguish one from the other.  However view models are not mapped to the underlying database,
rather they represent some aggregation of state from one or more underlying entities.  Their state is
serialized and recreated from their internal identifier; this identifier is visible as the object’s URL in
the Wicket viewer or RestfulObjects viewer.

There’s no need though for the view model to aggregate the state of regular domain entities.  A view
model could also be used as a proxy for some externally managed entity, accessed over a web
service or REST API; it could even be a representation of state held in-memory (such as user
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preferences, for example).

There are also several types of domain services.  Most easily described are those domain services
(discussed above) that are represented as the menu actions on top-level menu bars.  Another
variation are contributed services - domain services that contribute behaviour or (derived) state
to entities/view models.  Finally domain services may also simply provide additional non-UI
functionality; an example being to perform an address geocoding lookup against the google-maps
API.

Also worth mentioning: domain services can also be either singletons (discussed above) or request-
scoped; the latter being annotated with @javax.enterprise.context.RequestScoped.  An example of
the request-scoped service is the Scratchpad service, for sharing arbitrary data between multiple
objects.

The final type of domain object is the mixin.  These are similar to contributed services in that they
also contribute (or rather, mixin) both behaviour or (derived) state to entities/view models.
However, they provide a more control over contributed services, with a cleaner programming
model similar to traits found in other languages.

The diagram below summarizes the various types of domain object:

The Apache Isis programming model uses annotations to distinguish these object types:

• view models are annotated either with @DomainObject(nature=VIEW_MODEL) or using @ViewModel.
Which is used is a matter of personal preference. 

It is also possible to implement the ViewModel interface, for finer-grained control.

• domain entities that are persisted to the database (as the vast majority will) are annotated with
@DomainObject(nature=ENTITY). In addition such domain entities are annotated with the
JDO/DataNucleus annotation of @javax.jdo.annotations.PersistenceCapable.
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In addition, if a domain entity is a proxy for state managed in an external system, or merely for
some state held in-memory, then @DomainObject(nature=EXTERNAL_ENTITY) or
@DomainObject(nature=INMEMORY_ENTITY) can be used.

• mixins are annotated either with @DomainObject(nature=MIXIN) or using @Mixin.  As for view
models, which is used is a matter of personal preference.

• finally, domain services` are annotated with @DomainService(nature=…) where the nature is
either VIEW_MENU_ONLY (for domain services whose actions appear on the top-level menu bars), or
VIEW_CONTRIBUTIONS_ONLY (for domain services whose actions are contributed to entities or view
models), or DOMAIN (for domain services whose functionality is simply for other domain objects
to invoke programmatically).

It is also possible to specify a nature of simply VIEW, this combining VIEW_MENU_ONLY and
VIEW_CONTRIBUTIONS_ONLY. This is in fact the default, useful for initial prototyping.  A final nature
is VIEW_REST_ONLY which is for domain services whose functionality is surfaced only by the
RestfulObjects viewer.

Worth emphasising is that domain entities and view models hold state, whereas domain services
are generally stateless.  If a domain service does hold state (eg the Scratchpad service noted above)
then it should be @RequestScoped so that this state is short-lived and usable only within a single
request.

2.3.3. Object Members

Every domain object in Apache Isis consists of (at most) three types of members:

• properties, such as a `Customer’s `firstName

• collections, such as a Customer’s `orders collection of Orders

• actions, such as a Customer'`s `placeOrder(…) method.

Some domain objects - specifically domain services and mixins - only have actions.  In the case of
contributing services and mixins these actions can (depending upon their semantics and
signatures) be represented as derived properties or collections on the entity/view model to which
they contribute/mix-in.

Properties

Properties follow the standard getter/setter pattern, with the return type being a scalar (a value
object or another entity or view model).

For example, with:
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public class Customer
    private String firstName;
    public String getFirstName() { return firstName; }
    public void setFirstName(String firstName) { this.firstName = firstName; }
    ...
}

the framework infers the Customer domain entity, which in turn has a firstName string property.

Collections

Collections are also represented by a getter and setter, however the return type is a Collection or
subtype.

For example, with:

public class Customer
    private SortedSet<Order> orders = new TreeSet<Order>();
    public SortedSet<Order> getOrders() { return orders; }
    public void setOrders(SortedSet<Order> orders) { this.orders = orders; }
    ...
}

the framework infers the orders collection.


The most commonly used collection type is java.util.SortedSet; entities are most
commonly mapped to a relational database (ie a datastore with set semantics)
and we recommend that all entities define a natural ordering so that when
rendered in the UI they will be ordered "meaningfully" to the end-user.

Actions

The third type of object member is actions.  (To a first approximation), actions are all public
methods that do not represent properties or collections.

For example:

public class Customer
    public Customer placeOrder(Product p, int quantity) { ... }
    ...
}

corresponds to the placeOrder action.
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
The above is a simplification; the Apache Isis programming model also recognizes
a number of other supporting methods each of which has its own prefix such as
hide, disable or validate.  These can be considered as "reserved words" in Apache
Isis, and do not correspond to actions even though they have public visibility.

2.3.4. Entities vs View Models

When developing an Apache Isis application you will most likely start off with the persistent
domain entities: Customer, Order, Product, and so on.  For some applications this may well suffice.
However, if the application needs to integrate with other systems, or if the application needs to
support reasonably complex business processes, then you may need to look beyond just domain
entities.

To support these use cases we support view models.  In the same way that an (RDBMS) database
view can aggregate and abstract from multiple underlying database tables, so a view model sits on
top of one or many underlying entities.

View models are not persisted, but nevertheless they can have behaviour (and titles, and icons) just
like domain entities.  Indeed, to a user of the system there is no particular distinction (again, in the
same way that when using an RDBMS one can use database views and database tables pretty much
interchangeably).

View models generally tend to be associated with supporting a particular use case; logically they
are part of the application layer, not part of the domain layer (where entities live).

We introduce view models here because they do get mentioned quite often within the users and
reference guide.  However, we do consider them a more advanced topic; we generally recommend
that you build your applications from the domain layer up, rather than from the view model down.

For further discussion on view models, see this topic.

2.3.5. Domain Services

Domain services consist of a set of logically grouped actions, and as such follow the same
conventions as for entities. However, a service cannot have (persisted) properties, nor can it have
(persisted) collections.

Domain services are instantiated once and once only by the framework, and are used to centralize
any domain logic that does not logically belong in a domain entity or value. Apache Isis will
automatically inject services into every domain entity that requests them, and into each other.

For convenience you can inherit from AbstractService or one of its subclasses, but this is not
mandatory.

Domain Services vs View Services

 TODO

@DomainService(nature=…)
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Factories, Repositories and Services

A distinction is sometimes made between a factory (that creates object) and a repository (that
is used to find existing objects).  You will find them discussed separately in Evans' Domain
Driven Design, for example.

In Apache Isis these are all implemented as domain services.  Indeed, it is quite common to
have a domain service that acts as both a factory and a repository.

2.3.6. Mixins & Contributions

 TODO

For more information, see this topic on contributions, and this topic on mixins.

2.3.7. Domain Events

 TODO; see domain event classes.

UI Events

 TODO; see UI event classes.

2.3.8. OIDs

As well as defining a metamodel of the structure (domain classes) of its domain objects, Apache Isis
also manages the runtime instances of said domain objects.

When a domain entity is recreated from the database, the framework keeps track of its identity
through an "OID": an object identifier.  Fundamentally this is a combination of its type (domain
class), along with an identifier.  You can think of it as its "primary key", except across all domain
entity types.

For portability and resilience, though, the object type is generally an alias for the actual domain
class: thus "customers.CUS", say, rather than "com.mycompany.myapp.customers.Customer".  This is
derived from an annotation.  The identifier meanwhile is always converted to a string.

Although simple, the OID is an enormously powerful concept: it represents a URI to any domain
object managed by a given Apache Isis application.  With it, we have the ability to lookup any
arbitrary domain objects.

Some examples:

• an OID allows sharing of information between users, eg as a deep link to be pasted into an
email.

• the information within an OID could be converted into a barcode, and stamped onto a PDF
form.  When the PDF is scanned by the mail room, the barcode could be read to attach the
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correspondence to the relevant domain object.

• as a handle to any object in an audit record (as used by AuditingService or AuditerService
(1.13.0-SNAPSHOT));

• similarly within implementations of CommandService to persist Command objects

• similarly within implementations of PublisherService (1.13.0-SNAPSHOT) to persist published
action invocations

• and of course both the RestfulObjects viewer and Wicket viewer use the oid tuple to look up,
render and allow the user to interact with domain objects.

Although the exact content of an OID should be considered opaque by domain objects, it is possible
for domain objects to obtain OIDs.  These are represented as Bookmark`s, obtained from the

`BookmarkService.  Deep links meanwhile can be obtained from the @DeepLinkService.

OIDs can also be converted into XML format, useful for integration scenarios.  The common schema
XSD defines the oidDto complex type for precisely this purpose.

2.3.9. Value Objects (Primitives)

 TODO

2.4. Framework-provided Services
Most framework domain services are API: they exist to provide support functionality to the
application’s domain objects and services.  In this case an implementation of the service will be
available, either by Apache Isis itself or by Isis Addons (non ASF).

Some framework domain services are SPI: they exist primarily so that the application can influence
the framework’s ehaviour.  In these cases there is (usually) no default implementation; it is up to
the application to provide an implementation.

General purpose:

• DomainObjectContainer; mostly deprecated, replaced by:

• ClockService

• ConfigurationService

• MessageService

• RepositoryService

• ServiceRegistry

• TitleService

• UserService

• IsisJdoSupport

• WrapperFactory

• EventBusService

• EmailService
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Commands/Interactions/Background/Auditing/Publishing/Profiling:

• CommandContext (SPI)

• CommandService (SPI)

• CommandMementoService (SPI)

• InteractionContext (SPI)

• AuditingService (SPI)

• AuditerService (SPI) (1.13.0-SNAPSHOT)

• BackgroundService

• BackgroundCommandService (SPI)

• PublishingService (SPI)

• PublishererService (SPI) (1.13.0-SNAPSHOT)

• MetricsService

Information Sharing:

• Scratchpad

• ActionInvocationContext

• QueryResultsCache

UserManagement:

• UserProfileService (SPI)

• UserRegistrationService (SPI)

• EmailNotificationService (SPI)

Bookmarks and Mementos:

• BookmarkService

• MementoService

• DeepLinkService

• JaxbService

• XmlSnapshotService

Layout and UI Management:

• HomePageProviderService

• LayoutService

• GridLoaderService (SPI)

• GridService (SPI)

• GridSystemService (SPI)

• HintStore (SPI)

• RoutingService (SPI)
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• UrlEncodingService (SPI)

REST Support:

• AcceptHeaderService

• SwaggerService

• ContentMappingService (SPI)

Metamodel:

• ApplicationFeatureRepository

• MetamodelService

Other API:

• FixtureScriptsDefault

• GuiceBeanProvider

• SudoService

• TransactionService

Other SPI:

• ClassDiscoveryService (SPI)

• ErrorReportingService (SPI)

• EventSerializer (SPI)

• ExceptionRecognizer (SPI)

• FixtureScriptsSpecificationProvider (SPI)

• LocaleProvider (SPI)

• TranslationService (SPI)

• TranslationsResolver (SPI)

• TranslationsResolver (SPI)

A full list of services can be found in the Domain Services reference guide.

2.5. Isis Add-ons
The Isis Addons website provides a number of reusable modules and other extensions for Apache
Isis.  This chapter focuses just on the modules, all of which have a name of the form isis-module-
xxx.


Note that Isis addons, while maintained by Apache Isis committers, are not part
of the ASF.

The modules themselves fall into four broad groups:

• modules that provide an implementations of API defined by Apache Isis
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where Apache Isis has hooks to use the service if defined by provides no implementations of its
own.  The command, auditing, publishing, security  and sessionlogger modules fall into this
category.  Typically the domain objects themselves wouldn’t interact with these services

• modules that provide standalone domain services with their own API and implementation

These are simply intended to be used by domain objects.  The docx, excel, settings and
stringinterpolator fall into this category.

• modules that provide standalone domain entities (and supporting services) for a particular
subdomain

The tags module falls into this category

• modules that provide developer utilities

Not intended for use by either the framework or domain objects, but provide utilities that the
developer themselves might use.  The devutils module (not suprisingly) falls into this category

Each of the modules has a full README and example application demonstrating their usage.  The
sections below briefly outline the capabilities of these modules.

2.6. Other Deployment Options
Apache Isis is a mature platform suitable for production deployment, with its "sweet spot" being
line-of-business enterprise applications.  So if you’re looking to develop that sort of application, we
certainly hope you’ll seriously evaluate it.

But there are other ways that you can make Apache Isis work for you; in this chapter we explore a
few of them.

2.6.1. Deploy to production

Let’s start though with the default use case for Apache Isis: building line-of-business enterprise
applications, on top of its Wicket viewer.

Apache Wicket, and therefore Apache Isis in this configuration, is a stateful architecture.  As a
platform it is certainly capable of supporting user bases of several thousand (with perhaps one or
two hundred concurrent); however it isn’t an architecture that you should try to scale up to tens of
thousands of concurrent users.

The UI UI generated by the Wicket viewer is well suited to many line-of-business apps, but it’s also
worth knowing that (with a little knowledge of the Wicket APIs) it relatively straightforward to
extend.  As described in Isis addons chapter, the viewer already has integrations with google maps,
a full calendar and an export to Excel component.  We are also aware of integrations with SVG
images (for floor maps of shopping center) and of custom widgets displaying a catalogue (text and
images) of medical diseases.

Deploying on Apache Isis means that the framework also manages object persistence.  For many
line-of-business applications this will mean using a relational database.  It is also possible (courtesy
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of its integratinon with DataNucleus) to deploy an Isis app to a NoSQL store such as Neo4J or
MongoDB; and it is also possible to deploy to cloud platforms such as Google App Engine (GAE).

2.6.2. Use for prototyping

Even if you don’t intend to deploy your application on top of Apache Isis, there can be a lot of value
in using Apache Isis for prototyping.  Because all you need do to get an app running is write domain
objects, you can very quickly explore a domain object model and validate ideas with a domain
expert.

By focusing just on the domain, you’ll also find that you start to develop a ubiquitous language - a
set of terms and concepts that the entire team (business and technologists alike) have a shared
understanding.

Once you’ve sketched out your domain model, you can then "start-over" using your preferred
platform.

2.6.3. Deploy on your own platform

The programming model defined by Apache Isis deliberately minimizes the dependencies on the
rest of the framework. In fact, the only hard dependency that the domain model classes have on
Apache Isis is through the org.apache.isis.applib classes, mostly to pick up annotations such as
@Disabled. So, if you have used Apache Isis for prototyping (discussed above), then note that it’s
quite feasible to take your domain model a the basis of your actual development effort; Apache Isis'
annotations and programming conventions will help ensure that any subtle semantics you might
have captured in your prototyping are not lost.

If you go this route, your deployment platform will of course need to provide similar capabilities to
Apache Isis.  In particular, you’ll need to figure out a way to inject domain services into domain
entities (eg using a JPA listener), and you’ll also need to reimplement any domain services you have
used that Apache Isis provides "out-of-the-box" (eg QueryResultsCache domain service).

2.6.4. Deploy the REST API

REST (Representation State Transfer) is an architectural style for building highly scalable
distributed systems, using the same principles as the World Wide Web. Many commercial web APIs
(twitter, facebook, Amazon) are implemented as either pure REST APIs or some approximation
therein.

The Restful Objects specification defines a means by a domain object model can be exposed as
RESTful resources using JSON representations over HTTP. Apache Isis' RestfulObjects viewer is an
implementation of that spec, making any Apache Isis domain object automatically available via
REST.

There are a number of use cases for deploying Isis as a REST API, including:

• to allow a custom UI to be built against the RESTful API

For example, using AngularJS or some other RIA technology such as Flex, JavaFX, Silverlight
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• to enable integration between systems

REST is designed to be machine-readable, and so is an excellent choice for synchronous data
interchange scenarios.

• as a ready-made API for migrating data from one legacy system to its replacement.

As for the auto-generated webapps, the framework manages object persistence. It is perfectly
possible to deploy the REST API alongside an auto-generated webapp; both work from the same
domain object model.

2.6.5. Implement your own viewer

Isis' architecture was always designed to support multiple viewers; and indeed Apache Isis out-of-
the-box supports two: the Wicket viewer, and the Restful Objects viewer (or three, if one includes
the Wrapper Factory).

While we mustn’t understate the effort involved here, it is feasible to implement your own viewers
too.  Indeed, one of Apache Isis' committers does indeed have a (closed source) viewer, based on
Wavemaker.
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Chapter 3. Getting Started
To get you up and running quickly, Apache Isis provides a SimpleApp archetype to setup a simple
application as the basis of your own apps.  This is deliberately very minimal so that you won’t have
to spend lots of time removing generated artifacts.  On the other hand, it does set up a standard
multi-module maven structure with unit- and integration tests pre-configured, as well as a webapp
module so that you can easily run your app.  We strongly recommend that you preserve this
structure as you develop your own Isis application.

In this chapter we also discuss the DataNucleus enhancer.  DataNucleus is the reference
implementation of the JDO (Java data objects) spec, and Apache Isis integrates with DataNucleus as
its persistence layer.  The enhancer performs post-processing on the bytecode of your persistent
domain entities, such that they can be persisted by Apache Isis' JDO/DataNucleus objectstore.



The SimpleApp archetype automatically configures the enhancer, so there’s little
you need to do at this stage.  Even so we feel it’s a good idea to be aware of this
critical part of Apache Isis runtime; if the enhancer does not run, then you’ll find
the app fails to start with (what will seem like) quite an obscure exception
message.

3.1. Prerequisites
Apache Isis is a Java based framework, so in terms of prerequisites, you’ll need to install:

• Java 7 or 8 JDK

• Apache Maven 3.0.5 or later

You’ll probably also want to use an IDE; the Apache Isis committers use either IntelliJ or Eclipse; in
the Developers' Guide we have detailed setup instructions for using these two IDEs.  If you’re a
NetBeans user you should have no problems as it too has strong support for Maven.

When building and running within an IDE, you’ll also need to configure the Datanucleus enhancer.
This is implemented as a Maven plugin, so in the case of IntelliJ, it’s easy enough to run the
enhancer as required. It should be just as straightforward for NetBeans too.

For Eclipse the maven integration story is a little less refined.  All is not lost, however; DataNucleus
also has an implementation of the enhancer as an Eclipse plugin, which usually works well enough.

3.2. SimpleApp Archetype
The quickest way to get started with Apache Isis is to run the simple archetype.  This will generate a
very simple one-class domain model, called SimpleObject, with a single property name.

There is also a corresponding SimpleObjects domain service which acts as a repository for
SimpleObject entity.  From this you can easily rename these initial classes, and extend to build up
your own Apache Isis domain application.
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Finally, the domain service also includes a HomePageViewModel which acts as a home page for the app.

3.2.1. Generating the App

Create a new directory, and cd into that directory.

To build the app from the latest stable release, then run the following command:

mvn archetype:generate  \
    -D archetypeGroupId=org.apache.isis.archetype \
    -D archetypeArtifactId=simpleapp-archetype \
    -D archetypeVersion=1.12.2 \
    -D groupId=com.mycompany \
    -D artifactId=myapp \
    -D version=1.0-SNAPSHOT \
    -B

where:

• groupId represents your own organization, and

• artifactId is a unique identifier for this app within your organization.

• version is the initial (snapshot) version of your app

The archetype generation process will then run; it only takes a few seconds.

We also maintain the archetype for the most current -SNAPSHOT; an app generated with this
archetype will contain the latest features of Apache Isis, but the usual caveats apply: some features
still in development may be unstable.

The process is almost identical to that for stable releases, however the archetype:generate goal is
called with slightly different arguments:

mvn archetype:generate  \
    -D archetypeGroupId=org.apache.isis.archetype \
    -D archetypeArtifactId=simpleapp-archetype \
    -D archetypeVersion=1.13.0-SNAPSHOT \
    -D groupId=com.mycompany \
    -D artifactId=myapp \
    -D version=1.0-SNAPSHOT \
    -D archetypeRepository=http://repository-estatio.forge.cloudbees.com/snapshot/ \
    -B

where as before:

• groupId represents your own organization, and

• artifactId is a unique identifier for this app within your organization.

• version is the initial (snapshot) version of your app
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but also:

• archetypeVersion is the SNAPSHOT version of Apache Isis.

• archetypeRepository specifies the location of our snapshot repo (hosted on CloudBees), and

The archetype generation process will then run; it only takes a few seconds.

3.2.2. Building the App

Switch into the root directory of your newly generated app, and build your app:

cd myapp
mvn clean install

where myapp is the artifactId entered above.

3.2.3. Running the App

The simpleapp archetype generates a single WAR file, configured to run both the Wicket viewer and
the Restful Objects viewer.  The archetype also configures the DataNucleus/JDO Objectstore to use
an in-memory HSQLDB connection.

Once you’ve built the app, you can run the WAR in a variety of ways.

Using mvn Jetty plugin

First, you could run the WAR in a Maven-hosted Jetty instance, though you need to cd into the
webapp module:

cd webapp
mvn jetty:run

You can also provide a system property to change the port:

cd webapp
mvn jetty:run -D jetty.port=9090

Using a regular servlet container

You can also take the built WAR file and deploy it into a standalone servlet container such as
[Tomcat](http://tomcat.apache.org).  The default configuration does not require any configuration of
the servlet container; just drop the WAR file into the webapps directory.

From within the IDE

Most of the time, though, you’ll probably want to run the app from within your IDE.  The mechanics
of doing this will vary by IDE; see the Developers' Guide for details of setting up Eclipse or IntelliJ
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IDEA.  Basically, though, it amounts to running org.apache.isis.WebServer, and ensuring that the
DataNucleus enhancer has properly processed all domain entities.

Here’s what the setup looks like in IntelliJ IDEA:

3.2.4. Running with Fixtures

It is also possible to start the application with a pre-defined set of data; useful for demos or manual
exploratory testing.  This is done by specifying a fixture script on the command line.

If you are running the app from an IDE, then you can specify the fixture script using the --fixture
flag.  The archetype provides the domainapp.fixture.scenarios.RecreateSimpleObjects fixture script,
for example:
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Alternatively, you can run with a different AppManifest using the --appManifest (or -m) flag.  The
archetype provides domainapp.app.DomainAppAppManifestWithFixtures which specifies the
aforementioned RecreateSimpleObjects fixture.

3.2.5. Using the App

 These screenshots are for v1.10.0.

When you start the app, you’ll be presented with a welcome page from which you can access the
webapp using either the Wicket viewer or the Restful Objects viewer:
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The Wicket viewer provides a human usable web UI (implemented, as you might have guessed
from its name, using Apache Wicket), so choose that and navigate to the login page:

The app itself is configured to run using shiro security, as configured in the WEB-INF/shiro.ini
config file.  You can login with:

• username: sven
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• password: pass

The application is configured to run with an in-memory database, and (unless you started the app
with fixture scripts as described above), initially there is no data.  We can though run a fixture
script from the app itself:

The fixture script creates three objects, and the action returns the first of these:
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The application generated is deliberaetly very minimal; we don’t want you to have to waste
valuable time removing generated files.  The object contains a single "name" property, and a single
action to update that property:

When you hit OK, the object is updated:

For your most signficant domain entities you’ll likely have a domain service to retrieve or create
instances of those obejcts.  In the generated app we have a "Simple Objects" domain service that lets
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us list all objects:

whereby we see the three objects created by the fixture script (one having been updated):

and we can also use the domain service to create new instances:
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prompting us for the mandatory information (the name):

which, of course, returns the newly created object:
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When we list all objects again, we can see that the object was indeed created:

Going back to the home page (localhost:8080) we can also access the Restful Objects viewer.  The
generated application is configured to use HTTP Basic Auth:
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The Restful Objects viewer provides a REST API for computer-to-computer interaction, but we can
still interact with it from a browser:


Depending on your browser, you may need to install plugins.  For Chrome, we
recommend json-view (which renders the JSON indented and automatically
detects hyperlinks) and REST Postman.

41

images/getting-started/using-simple-app/220-login-to-restful-viewer.png
images/getting-started/using-simple-app/230-home-page.png


The REST API is a complete hypermedia API, in other words you can follow the links to access all
the behaviour exposed in the regular Wicket app.  For example, we can navigate to the
listAll/invoke resource:

which when invoked (with an HTTP GET) will return a representation of the domain objects.

To log in, use sven/pass.
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3.2.6. Modifying the App

Once you are familiar with the generated app, you’ll want to start modifying it.  There is plenty of
guidance on this site; check out the 'programming model how-tos' section on the main
documentation page first).

If you use IntelliJ IDEA or Eclipse, do also install the live templates (for IntelliJ) / editor templates
(for Eclipse); these will help you follow the Apache Isis naming conventions.

3.2.7. App Structure

As noted above, the generated app is a very simple application consisting of a single domain object
that can be easily renamed and extended. The intention is not to showcase all of Apache Isis'
capabilities; rather it is to allow you to very easily modify the generated application (eg rename
SimpleObject to Customer) without having to waste time deleting lots of generated code.

Module Description

myapp The parent (aggregator) module

myapp-app (1.9.0) The "app" module, containing the (optional) app manifest and any
application-level services.

myapp-dom The domain object model, consisting of SimpleObject and SimpleObjects
(repository) domain service.

myapp-fixture Domain object fixtures used for initializing the system when being
demo’ed or for unit testing.

myapp-integtests End-to-end integration tests that exercise from the UI through to the
database

myapp-webapp Run as a webapp (from web.xml) hosting the Wicket viewer and/or the
RestfulObjects viewer

If you run into issues, please don’t hesitate to ask for help on the users mailing list.

3.3. Datanucleus Enhancer
DataNucleus is the reference implementation of the JDO (Java data objects) spec, and Apache Isis
integrates with DataNucleus as its persistence layer.  Datanucleus is a very powerful library,
allowing domain entities to be mapped not only to relational database tables, but also to NoSQL
stores such as Neo4J, MongoDB and Apache Cassandra.

With such power comes a little bit of complexity to the development environment: all domain
entities must be enhanced through the DataNucleus enhancer.


Bytecode enhancement is actually a requirement of the JDO spec; the process is
described in outline here.

What this means is that the enhancer — available as both a Maven plugin and as an Eclipse
plugin — must, one way or another, be integrated into your development environment.
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If working from the Maven command line, JDO enhancement is done using the maven-datanucleus-
plugin.  As of 1.9.0, we put all the configuration into an (always active) profile:


The configuration described below is automatically set up by the SimpleApp
archetype.
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<profile>
    <id>enhance</id>
    <activation>
        <activeByDefault>true</activeByDefault>
    </activation>
    <properties>
        <datanucleus-maven-plugin.version>4.0.1</datanucleus-maven-plugin.version>
    </properties>
    <build>
        <plugins>
            <plugin>
                <groupId>org.datanucleus</groupId>
                <artifactId>datanucleus-maven-plugin</artifactId>
                <version>${datanucleus-maven-plugin.version}</version>
                <configuration>
                    <fork>false</fork>
                    <log4jConfiguration>
${basedir}/log4j.properties</log4jConfiguration>
                    <verbose>true</verbose>
                    <props>${basedir}/datanucleus.properties</props>
                </configuration>
                <executions>
                    <execution>
                        <phase>process-classes</phase>
                        <goals>
                            <goal>enhance</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
    <dependencies>
        <dependency>
            <groupId>org.datanucleus</groupId>
            <artifactId>datanucleus-core</artifactId>
        </dependency>
        <dependency>
            <groupId>org.datanucleus</groupId>
            <artifactId>datanucleus-jodatime</artifactId>
        </dependency>
        <dependency>
            <groupId>org.datanucleus</groupId>
            <artifactId>datanucleus-api-jdo</artifactId>
        </dependency>
    </dependencies>
</profile>

The SimpleApp archetype  sets up the plugin correctly in the dom (domain object model) module.
(It’s actually a little bit more complex to cater for users of the Eclipse IDE using Eclipse’s m2e
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plugin).

3.3.1. META-INF/persistence.xml

It’s also a good idea to ensure that the dom module has a JDO META-INF/persistence.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

    <persistence-unit name="simple"> ①
    </persistence-unit>
</persistence>

① change as required; typically is the name of the app.

Again, the SimpleApp archetype does this.



If running on Windows, then there’s a good chance you’ll hit the maximum path
length limit.   In this case the persistence.xml file is mandatory rather than
optional.

This file is also required if you are using developing in Eclipse and relying on the
DataNucleus plugin for Eclipse rather than the DataNucleus plugin for Maven.
More information can be found here.
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Chapter 4. How tos
This chapter provides a grab bag of "how-to"s and tips to help you go about actually developing
Apache Isis domain applications.

4.1. Class Structure
Apache Isis works by building a metamodel of the domain objects: entities, view models and
services.  The class members of both entities and view models represent both state — (single-
valued) properties and (multi-valued) collections — and behaviour — actions.  The class members of
domain services is simpler: just behaviour, ie actions.

In the automatically generated UI a property is rendered as a field.  This can be either of a value
type (a string, number, date, boolean etc) or can be a reference to another entity.  A collection is
generally rendered as a table.

In order for Apache Isis to build its metamodel the domain objects must follow some conventions:
what we call the Apache Isis Programming Model.  This is just an extension of the pojo / JavaBean
standard of yesteryear: properties and collections are getters/setters, while actions are simply any
remaining public methods.

Additional metamodel semantics are inferred both imperatively from supporting methods and
declaratively from annotations.

In this section we discuss the mechanics of writing domain objects that comply with Apache Isis'
programming model.



In fact, the Apache Isis programming model is extensible; you can teach Apache
Isis new programming conventions and you can remove existing ones; ultimately
they amount to syntax.   The only real fundamental that can’t be changed is the
notion that objects consist of properties, collections and actions.

You can learn more about extending Apache Isis programming model here.

4.1.1. Class Definition

 TODO

Classes are defined both to Isis and (if an entity) also to JDO/DataNucleus.

We use Java packages as a way to group related domain objects together; the package name forms a
namespace. We can then reason about all the classes in that package/namespace as a single unit.

In the same way that Java packages act as a namespace for domain objects, it’s good practice to map
domain entities to their own (database) schemas.

 For more on this topic, see the topic discussing modules and decoupling.
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4.1.2. Property

 TODO

Value vs Reference Types

 TODO

The annotations for mapping value types tend to be different for properties vs action parameters,
because JDO annotations are only valid on properties.  The table in the Properties vs Parameters
section provides a handy reference of each.

Optional Properties

JDO/DataNucleus' default is that a property is assumed to be mandatory if it is a primitive type (eg
int, boolean), but optional if a reference type (eg String, BigDecimal etc).  To override optionality in
JDO/DataNucleus the @Column(allowsNull="…") annotations is used.

Apache Isis on the other hand assumes that all properties (and action parameters, for that matter)
are mandatory, not optional.  These defaults can also be overridden using Apache Isis' own
annotations, specifically @Property(optionality=…).

These different defaults can lead to incompatibilities between the two frameworks.  To counteract
that, Apache Isis also recognizes and honours JDO’s @Column(allowsNull=…).

For example, rather than:

@javax.jdo.annotations.Column(allowNulls="true")
private LocalDate date;
@Property(optionality=Optionality.OPTIONAL)
public LocalDate getDate() { ... }
public void setDate(LocalDate d) { ... }

you should instead simply write:

private LocalDate date;
@javax.jdo.annotations.Column(allowNulls="true")
public LocalDate getDate() { ... }
public void setDate(LocalDate d) { ... }


With JDO/DataNucleus it’s valid for the @Column annotation to be placed on either
the field or the getter.  Apache Isis (currently) only looks for annotations on the
getter.  We therefore recommend that you always place @Column on the gettter.

In all cases the framework will search for any incompatibilities in optionality (whether specified
explicitly or defaulted implicitly) between Isis' defaults and DataNucleus, and refuse to boot if any
are found (fail fast).
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Handling Mandatory Properties in Subtypes

If you have a hierarchy of classes then you need to decide which inheritance strategy to use.

• "table per hierarchy", or "rollup" (InheritanceStrategy.SUPERCLASS_TABLE)

whereby a single table corresponds to the superclass, and also holds the properties of the
subtype (or subtypes) being rolled up

• "table per class" (InheritanceStrategy.NEW_TABLE)

whereby is a table for both superclass and subclass, in 1:1 correspondence

• "rolldown" (InheritanceStrategy.SUBCLASS_TABLE)

whereby a single table holds the properties of the subtype, and also holds the properties of its
supertype

In the first "rollup" case, we can have a situation where - logically speaking - the property is
mandatory in the subtype - but it must be mapped as nullable in the database because it is n/a for
any other subtypes that are rolled up.

In this situation we must tell JDO that the column is optional, but to Apache Isis we want to enforce
it being mandatory. This can be done using the @Property(optionality=Optionality.MANDATORY)
annotation.

For example:

@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.SUPER_TABLE)
public class SomeSubtype extends SomeSuperType {
    private LocalDate date;
    @javax.jdo.annotations.Column(allowNulls="true")
    @Property(optionality=Optionality.MANDATORY)
    public LocalDate getDate() { ... }
    public void setDate(LocalDate d) { ... }
}



The @Property(optionality=…) annotation is equivalent to the older but still
supported @Optional annotation and @Mandatory annotations. Its benefit is that it
lumps together all Apache Isis' property metadata in a single annotation.  Its
downside is that it is rather verbose if the only semantic that needs to be
specified — as is often the case — is optionality.

An alternative way to achieve this is to leave the JDO annotation on the field (where it is invisible to
Apache Isis), and rely on Isis' default, eg:
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@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.SUPER_TABLE)
public class SomeSubtype extends SomeSuperType {
    @javax.jdo.annotations.Column(allowNulls="true")
    private LocalDate date;
    // mandatory in Apache Isis by default
    public LocalDate getDate() { }
    public void setDate(LocalDate d) { }
}

We recommend the former mapping, though, using @Property(optionality=Optionality.MANDATORY).

Strings (Length)

 TODO

Mapping JODA Dates

Isis' JDO objectstore bundles DataNucleus' built-in support for Joda LocalDate and LocalDateTime
datatypes, meaning that entity properties of these types will be persisted as appropriate data types
in the database tables.

It is, however, necessary to annotate your properties with @javax.jdo.annotations.Persistent,
otherwise the data won’t actually be persisted. See the JDO docs for more details on this.

Moreover, these datatypes are not in the default fetch group, meaning that JDO/DataNucleus will
perform an additional SELECT query for each attribute. To avoid this extra query, the annotation
should indicate that the property is in the default fetch group.

For example, the ToDoItem (in the todoapp example app (not ASF)) defines the dueBy property as
follows:

BigDecimals (Precision)

Working with java.math.BigDecimal properties takes a little care due to scale/precision issues.

For example, suppose we have:

private BigDecimal impact;
public BigDecimal getImpact() {
    return impact;
}
public void setImpact(final BigDecimal impact) {
    this.impact = impact;
}

JDO/DataNucleus creates, at least with HSQL, the table with the field type as NUMERIC(19). No
decimal digits are admitted. (Further details here).
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What this implies is that, when a record is inserted, a log entry similar to this one appears:

INSERT INTO ENTITY(..., IMPACT, ....) VALUES (...., 0.5, ....)

But when that same record is retrieved, the log will show that a value of "0" is returned, instead of
0.5.

The solution is to explicitly add the scale to the field like this:

@javax.jdo.annotations.Column(scale=2)
private BigDecimal impact;
public BigDecimal getImpact() {
    return impact;
}
public void setImpact(final BigDecimal impact) {
    this.impact = impact;
}

In addition, you should also set the scale of the BigDecimal, using setScale(scale, roundingMode).

More information can be found here and here.

Mapping Blobs and Clobs

Apache Isis configures JDO/DataNucleus so that the properties of type
org.apache.isis.applib.value.Blob and org.apache.isis.applib.value.Clob can also be persisted.

As for Joda dates, this requires the @javax.jdo.annotations.Persistent annotation. However,
whereas for dates one would always expect this value to be retrieved eagerly, for blobs and clobs it
is not so clear cut.

Mapping Blobs

For example, in the ToDoItem class (of the todoapp example app (non-ASF) the attachment property is
as follows:
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@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
    @javax.jdo.annotations.Column(name = "attachment_name"),
    @javax.jdo.annotations.Column(name = "attachment_mimetype"),
    @javax.jdo.annotations.Column(name = "attachment_bytes", jdbcType="BLOB", sqlType
= "LONGVARBINARY")
})
private Blob attachment;
@Property(
        optionality = Optionality.OPTIONAL
)
public Blob getAttachment() {
    return attachment;
}
public void setAttachment(final Blob attachment) {
    this.attachment = attachment;
}

The three @javax.jdo.annotations.Column annotations are required because the mapping classes
that Apache Isis provides (IsisBlobMapping and IsisClobMapping) map to 3 columns. (It is not an
error to omit these @Column annotations, but without them the names of the table columns are
simply suffixed _0, _1, _2 etc.

If the Blob is mandatory, then use:

@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
    @javax.jdo.annotations.Column(name = "attachment_name", allowsNull="false"),
    @javax.jdo.annotations.Column(name = "attachment_mimetype", allowsNull="false"),
    @javax.jdo.annotations.Column(name = "attachment_bytes",
                                  jdbcType="BLOB", sqlType = "LONGVARBINARY",
                                  allowsNull="false")
})
private Blob attachment;
@Property(
    optionality = Optionality.MANDATORY
)
public Blob getAttachment() {
return attachment;
}
public void setAttachment(final Blob attachment) {
this.attachment = attachment;
}


If specifying a sqlType of "LONGVARBINARY" does not work, try instead "BLOB".
There can be differences in behaviour between JDBC drivers.

Mapping Clobs

Mapping Clob`s works in a very similar way, but the `jdbcType and sqlType attributes will,
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respectively, be CLOB and LONGVARCHAR:

@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
    @javax.jdo.annotations.Column(name = "attachment_name"),
    @javax.jdo.annotations.Column(name = "attachment_mimetype"),
    @javax.jdo.annotations.Column(name = "attachment_chars",
                                  jdbcType="CLOB", sqlType = "LONGVARCHAR")
})
private Clob doc;
@Property(
    optionality = Optionality.OPTIONAL
)
public Clob getDoc() {
    return doc;
}
public void setDoc(final Clob doc) {
    this.doc = doc;
}


If specifying a sqlType of "LONGVARCHAR" does not work, try instead "CLOB".
There can be differences in behaviour between JDBC drivers.

Mapping to VARBINARY or VARCHAR

Instead of mapping to a sqlType of LONGVARBINARY (or perhaps BLOB), you might instead decide to
map to a VARBINARY.  The difference is whether the binary data is held "on-row" or as a pointer "off-
row"; with a VARBINARY the data is held on-row and so you will need to specify a length.

For example:

@javax.jdo.annotations.Column(name = "attachment_bytes", jdbcTypr="BLOB", sqlType =
"VARBINARY", length=2048)

The same argument applies to LONGVARCHAR (or CLOB); you could instead map to a regular VARCHAR:

@javax.jdo.annotations.Column(name = "attachment_chars", sqlType = "VARCHAR", length
=2048)

Support and maximum allowed length will vary by database vendor.

4.1.3. Collections

 TODO
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

While Apache Isis support collections of references, the framework (currently)
does not support collections of values. That is, it isn’t possible to define a
collection of type Set<String>.

Or, actually, you can, because that is a valid mapping supported by
JDO/DataNucleus .  However, Apache Isis has no default visualization.

One workaround is to mark the collection as @Programmatic.  This ensures that the
collection is ignored by Apache Isis.

Another workaround is to wrap each value in a view model, as explained in this
tip.

4.1.4. Actions

 TODO



While Apache Isis support actions whose parameters' types are scalar (values
such as String, int, or references such as Customer), the framework (currently)
does not support parameter types that are collections or maps.

The workaround is to mark the collection as @Programmatic, as described in
Ignoring Methods.  This ensures that the collection is ignored by Apache Isis.

4.1.5. Action Parameters

 TODO

Strings (Length)

 TODO

BigDecimals (Precision)

 TODO

Optional

 TODO

4.1.6. Injecting services

Apache Isis autowires (automatically injects) domain services into each entity, as well as into the
domain services themselves, using either method injection or field injection. The applib
DomainObjectContainer is also a service, so can be injected in exactly the same manner.
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

Isis currently does not support qualified injection of services; the domain service
of each type must be distinct from any other.

If you find a requirement to inject two instances of type SomeService, say, then the
work-around is to create trivial subclasses SomeServiceA and SomeServiceB and
inject these instead.

Field Injection

Field injection is recommended, using the @javax.inject.Inject annotation. For example:

public class Customer {
    @javax.inject.Inject
    OrderRepository orderRepository;
    ...
}

We recommend using default rather than private visibility so that the field can be mocked out
within unit tests (placed in the same package as the code under test).

Method Injection

Isis also supports two forms of method injection.  All that is required to inject a service into a
entity/service is to provide an appropriate method or field. The name of the method does not
matter, only that it is prefixed either set or inject, is public, and has a single parameter of the
correct type.

For example:

public class Customer {
    private OrderRepository orderRepository;
    public void setOrderRepository(OrderRepository orderRepository) {
        this.orderRepository = orderRepository;
    }
    ...
}

or alternatively, using 'inject' as the prefix:

public class Customer {
    private OrderRepository orderRepository;
    public void injectOrderRepository(OrderRepository orderRepository) {
        this.orderRepository = orderRepository;
    }
    ...
}
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Note that the method name can be anything; it doesn’t need to be related to the type being injected.

Constructor injection

Simply to note that constructor injection is not supported by Apache Isis (and is unlikely to be,
because the JDO specification for entities requires a no-arg constructor).

4.1.7. Properties vs Parameters

 TODO

In many cases the value types of properties and of action parameters align. For example, a Customer
entity might have a surname property, and there might also be corresponding changeSurname.  Ideally
we want the surname property and surname action parameter to use the same value type.

Having first-class support for this is a goal of Apache Isis, and it is already possible (by writing some
plumbing and glue code using Isis and DataNucleus APIs) to get some way towards this ideal.
However, in the vast majority of cases it is much easier and more practical to simply use standard
value types such as java.lang.String.

However, the JDO/DataNucleus annotations for specifying semantics such as optionality or
maximum length are restricted to only apply to fields and to methods; they cannot be applied to
action parameters.  It is therefore necessary to use Apache Isis' equivalent annotations for action
parameters.

The table below summarises the equivalence of some of the most common cases.

Table 1. Comparing annotations of Properties vs Action Parameters

value type/semantic property action parameter

string (length)

big decimal (precision)

Isis blob

optional @Column(allowsNull="true") ParameterLayout(optionality=Option
ality.OPTIONAL) or @Optional

4.1.8. Ignoring Methods

 TODO

Sometimes you want to define a public method on a domain object that is not intended to be
rendered in Apache Isis' UI.

To exclude such methods, use the @Programmatic annotation.
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4.2. UI Hints
The Apache Isis programming model includes several mechanisms for a domain object to provide
UI hints.  These range from their title (so an end-user can distinguish one object from another)
through to hints that can impact their CSS styling.

4.2.1. Object Titles and Icons

In Apache Isis every object is identified to the user by a title (label) and an icon.  This is shown in
several places: as the main heading for an object; as a link text for an object referencing another
object, and also in tables representing collections of objects.

The icon is often the same for all instances of a particular class, but it’s also possible for an
individual instance to return a custom icon.  This could represent the state of that object (eg a
shipped order, say, or overdue library book).

It is also possible for an object to provide a CSS class hint.  In conjunction with customized CSS this
can be used to apply arbitrary styling; for example each object could be rendered in a page with a
different background colour.

Object Title

The object title is a label to identify an object to the end-user.  Generally the object title is a label to
identify an object to the end-user.  There is no requirement for it to be absolutely unique, but it
should be "unique enough" to distinguish the object from other object’s likely to be rendered on the
same page.

The title is always shown with an icon, so there is generally no need for the title to include
information about the object’s type.  For example the title of a customer object shouldn’t include the
literal string "Customer"; it can just have the customer’s name, reference or some other meaningful
business identifier.

Declarative style

The @Title annotation can be used build up the title of an object from its constituent parts.

For example:

public class Customer {
    @Title(sequence="1", append=" ")
    public String getFirstName() { ... }
    @Title(sequence="2")
    public Product getLastName() { ... }
    ...
}

might return "Arthur Clarke", while:
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public class CustomerAlt {
    @Title(sequence="2", prepend=", ")
    public String getFirstName() { ... }

    @Title(sequence="1")
    public Product getLastName() { ... }
    ...
}

could return "Clarke, Arthur".

Note that the sequence is in Dewey Decimal Format.  This allows a subclass to intersperse
information within the title.  For example (please forgive this horrible domain modelling (!)):

public class Author extends Customer {
    @Title(sequence="1.5", append=". ")
    public String getMiddleInitial() { ... }
    ...
}

could return "Arthur C. Clarke".


Titles can sometimes get be long and therefore rather cumbersome in "parented"
tables.  If @Title has been used then the Wicket viewer will automatically exclude
portions of the title belonging to the owning object.

Imperative style

 TODO - see title()

Object Icon

The icon is often the same for all instances of a particular class, but it’s also possible for an
individual instance to return a custom icon.  This could represent the state of that object (eg a
shipped order, say, or overdue library book).

 TODO - iconName(), @DomainObjectLayout#cssClassFa()

Object CSS Styling

It is also possible for an object to return a CSS class.  In conjunction with customized CSS this can be
used to apply arbitrary styling; for example each object could be rendered in a page with a
different background colour.


TODO - cssClass(), @DomainObjectLayout#cssClass() @ActionLayout#cssClass(),
@PropertyLayout#cssClass(), @CollectionLayout#cssClass()
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4.2.2. Names and Descriptions

 TODO

 see also Internationalization

Class (object)

 TODO - @DomainObjectLayout#named(), @DomainObjectLayout#describedAs()

Property

 TODO - @PropertyLayout#named(), @PropertyLayout#describedAs()

Collections

 TODO - @CollectionLayout#named(), @CollectionLayout#describedAs()

Actions

 TODO - @ActionLayout#named(), @ActionLayout#describedAs()

Action Parameters

 TODO - @ParameterLayout#named(), @ParameterLayout#describedAs()


If you’re running on Java 8, then note that it’s possible to write Isis applications
without using @ParameterLayout(named=…) annotation.  Support for this can be
found in the Isis addons' paraname8 metamodel extension (non-ASF).  (In the
future we’ll fold this into core).  See also our guidance on upgrading to Java 8.

4.2.3. Layout

See the object layout chapter.

4.2.4. Eager rendering

By default, collections all rendered lazily, in other words in a "collapsed" table view:

 TODO - screenshot here

For the more commonly used collections we want to show the table expanded:

 TODO - screenshot here

For this we annotate the collection using the @CollectionLayout(render=RenderType.EAGERLY; for
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example

@javax.jdo.annotations.Persistent(table="ToDoItemDependencies")
private Set<ToDoItem> dependencies = new TreeSet<>();
@Collection
@CollectionLayout(
    render = RenderType.EAGERLY
)
public Set<ToDoItem> getDependencies() {
    return dependencies;
}

Alternatively, it can be specified the Xxx.layout.json file:

"dependencies": {
    "collectionLayout": {
        "render": "EAGERLY"
    },
}



It might be thought that collections that are eagerly rendered should also be
eagerly loaded from the database by enabling the defaultFetchGroup attribute:

@javax.jdo.annotations.Persistent(table="ToDoItemDependencies",
defaultFetchGroup="true")
private Set<ToDoItem> dependencies = new TreeSet<>();
...

While this can be done, it’s likely to be a bad idea, because doing so will cause
DataNucleus to query for more data than required even if the object is being
rendered within some referencing object’s table.

Of course, your mileage may vary, so don’t think you can’t experiment.

4.2.5. Action Icons and CSS

Apache Isis allows font awesome icons to be associated with each action, and for Bootstrap CSS to
be applied to action rendered as buttons.

These UI hint can be applied either to individual actions, or can be applied en-masse using pattern
matching.

Per action

 TODO - @ActionLayout#cssClass() and @ActionLayout#cssClassFa()
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Alternatively, you can specify these hints dynamically in the Xxx.layout.json for the entity.

Per pattern matching

Rather than annotating every action with @ActionLayout#cssClassFa() and @ActionLayout#cssClass()
you can instead specify the UI hint globally using regular expressions.

The configuration property isis.reflector.facet.cssClassFa.patterns is a comma separated list of
key:value pairs, eg:

isis.reflector.facet.cssClassFa.patterns=\
                        new.*:fa-plus,\
                        add.*:fa-plus-square,\
                        create.*:fa-plus,\
                        list.*:fa-list, \
                        all.*:fa-list, \
                        download.*:fa-download, \
                        upload.*:fa-upload, \
                        execute.*:fa-bolt, \
                        run.*:fa-bolt

where the key is a regex matching action names (eg create.*) and the value is a font-awesome icon
name (eg fa-plus) to be applied (as per @CssClassFa()) to all action members matching the regex.

Similarly, the configuration property isis.reflector.facet.cssClass.patterns is a comma separated
list of key:value pairs, eg:

isis.reflector.facet.cssClass.patterns=\
                        delete.*:btn-warning

where (again)the key is a regex matching action names (eg delete.*) and the value is a Bootstrap
CSS button class (eg btn-warning) to be applied (as per `@CssClass()) to all action members
matching the regex.


We strongly recommend that you use this technique rather than annotating each
action with @ActionLayout#cssClassFa() or @ActionLayout#cssClass().  Not only is
the code more maintainable, you’ll also find that it forces you to be consistent in
your action names.

4.2.6. 'Are you sure?' idiom

Sometimes an action might perform irreversible changes.  In such a case it’s probably a good idea
for the UI to require that the end-user explicitly confirms that they intended to invoke the action.

Using action semantics

One way to meet this requirement is using the framework’s built-in @Action#semantics() attribute:
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@Action(
        semantics = SemanticsOf.IDEMPOTENT_ARE_YOU_SURE
)
public SimpleObject updateName(
        @Parameter(maxLength = NAME_LENGTH)
        @ParameterLayout(named = "New name")
        final String name) {
    setName(name);
    return this;
}

This will render as:

Using a checkbox

An alternative approach (for all versions of the framework) is to require the end-user to check a
dummy checkbox parameter (and prevent the action from being invoked if the user hasn’t checked
that parameter).

For example:
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
Note that these screenshots shows an earlier version of the Wicket viewer UI
(specifically, pre 1.8.0).

If the user checks the box:

then the action will complete.

However, if the user fails to check the box, then a validation message is shown:

The code for this is pretty simple:

public List<ToDoItem> delete(@Named("Are you sure?") boolean areYouSure) {
    container.removeIfNotAlready(this);
    container.informUser("Deleted " + container.titleOf(this));
    return toDoItems.notYetComplete();          ①
}
public String validateDelete(boolean areYouSure) {
    return areYouSure? null: "Please confirm you are sure";
}

① invalid to return this (cannot render a deleted object)
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Note that the action itself does not use the boolean parameter, it is only used by the supporting
validate…() method.

4.3. Domain Services
In Apache Isis domain services have several responsibilities:

• to expose actions to be rendered in the menu

• to provide actions that are rendered as contributed actions/properties/collections on the
contributee domain object

• they act as subscribers to the event bus

• they act as repositories (find existing objects) or as factories (create new objects)

• they provide other services (eg performing calculations, attach a barcode, send an email etc).

• to implement an SPI of the framework, most notably cross-cutting concerns such as security,
command profiling, auditing and publishing.

It’s worth extending the Hexagonal Architecture to show where domain services — and in
particular the domain services provided by Isis Addons (non-ASF) — fit in:

Figure 2. The hexagonal architecture with Isis addons

The (non-ASF) Isis Addons are a good source of domain services, providing SPI implementations of
the common cross-cutting concerns, and also a number of APIs for domain objects to invoke (eg
tags, excel, settings).  Of course, you can also write your own domain services as well, for example
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to interface with some external CMS system, say.

The Apache Isis framework also provides numerous in-built domain services.  These are catalogued
in the domain services reference guide.

4.3.1. Organizing Services

In larger applications we have found it worthwhile to ensure that our domain services only act
aligned with these responsibilities, employing a naming convention so that it is clear what the
responsibilities of each domain service is.

The application provides the @DomainService(nature=…) annotation that helps distinguish some of
these responsibilities:

• VIEW indicates that the actions should appear both on the menu and also be used as
contributions

• VIEW_MENU_ONLY indicates that the actions should appear on the menu

• VIEW_CONTRIBUTED_ONLY indicates that the actions should appear on the menu

• DOMAIN indicates that the actions are for other domain objects to invoke (either directly or
indirectly through the event bus), but in any case should not be rendered at all in the UI

Pulling all the above together, here are our suggestions as to how you should organize your domain
services.

Factory and Repository

The factory/repository uses an injected DomainObjectContainer to both instantiate new objects and to
query the database for existing objects of a given entity type.  It is not visible in UI, rather other
services delegate to it.

We suggest naming such classes XxxRepository, eg:
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@DomainService(
    nature=NatureOfService.DOMAIN                               ①
)
public CustomerRepository {
    public List<Customer> findCustomerBy...(...) {
        return allMatches(...);
    }
    public Customer newCustomer(...) {
        Customer Customer = container.newTransientInstance(Customer.class);
        ...
        persistIfNotAlready(Customer);
        return Customer;
    }
    public List<Customer> allCustomers() {
        return container.allInstances(Customer.class);
    }
    @Inject
    DomainObjectContainer container;
}

① interacted with only programmatically by other objects in the domain layer.

There is no need to annotate the actions; they are implicitly hidden because of the domain service’s
nature.

Menu

Menu services provide actions to be rendered on the menu.

For the Wicket viewer, each service’s actions appear as a collection of menu items of a named
menu, and this menu is on one of the three menu bars provided by the Wicket viewer.  It is possible
for more than one menu service’s actions to appear on the same menu; a separator is shown
between each.

For the Restful Objects viewer, all menu services are shown in the services representation.

We suggest naming such classes XxxMenu, eg:
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@DomainService(
    nature = NatureOfService.VIEW_MENU_ONLY                     ①
)
@DomainServiceLayout(
        named = "Customers",                                    ②
        menuBar = DomainServiceLayout.MenuBar.PRIMARY,
        menuOrder = "10"
)
public class CustomerMenu {
    @Action(
            semantics = SemanticsOf.SAFE
    )
    @MemberOrder( sequence = "1" )
    public List<Customer> findCustomerBy...(...) {
        return CustomerRepository.findCustomerBy(...);          ③
    }

    @Action(
            semantics = SemanticsOf.NON_IDEMPOTENT
    )
    @MemberOrder( sequence = "3" )
    public Customer newCustomer(...) {
        return CustomerRepository.newCustomer(...);
    }

    @Action(
            semantics = SemanticsOf.SAFE,
            restrictTo = RestrictTo.PROTOTYPING
    )
    @MemberOrder( sequence = "99" )
    public List<Customer> allCustomers() {
        return CustomerRepository.allBankMandates();
    }

    @Inject
    protected CustomerRepository customerRepository;
}

① the service’s actions should be rendered as menu items

② specifies the menu name.  All services with the same menu name will be displayed on the same
menu, with separators between

③ delegates to an injected repository.

Not every action on the repository need to be delegated to of course (the above example does but
only because it is very simple).
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

Note also that while there’s nothing to stop VIEW_MENU domain services being
injected into other domain objects and interacted with programmatically, we
recommend against it.  Instead, inject the underlying repository.  If there is
additional business logic, then consider introducing a further DOMAIN-scoped
service and call that instead.

Contributions

Services can contribute either actions, properties or collections, based on the type of their
parameters.

We suggest naming such classes XxxContributions, eg:

@DomainService(
    nature=NatureOfService.VIEW_CONTRIBUTIONS_ONLY              ①
)
@DomainServiceLayout(
    menuOrder="10",
    name="...",
}
public OrderContributions {
    @Action(semantics=SemanticsOf.SAFE)
    @ActionLayout(contributed=Contributed.AS_ASSOCIATION)       ②
    @CollectionLayout(render=RenderType.EAGERLY)
    public List<Order> orders(Customer customer) {              ③
        return container.allMatches(...);
    }

    @Inject
    CustomerRepository customerRepository;
}

① the service’s actions should be contributed to the entities of the parameters of those actions

② contributed as an association, in particular as a collection because returns a List<T>.

③ Only actions with a single argument can be contributed as associations

More information about contributions can be found here.  More information about using
contributions and mixins to keep your domain application decoupled can be found here and here.

Event Subscribers

Event subscribers can both veto interactions (hiding members, disabling members or validating
changes), or can react to interactions (eg action invocation or property edit).

We suggest naming such classes XxxSubscriptions, eg:
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@DomainService(
    nature=NatureOfService.DOMAIN                       ①
)
@DomainServiceLayout(
    menuOrder="10",
    name="...",
}
public CustomerOrderSubscriptions {
    @com.google.common.eventbus.Subscribe
    public void on(final Customer.DeletedEvent ev) {
        Customer customer = ev.getSource();
        orderRepository.delete(customer);
    }
    @Inject
    OrderRepository orderRepository;
}

① subscriptions do not appear in the UI at all, so should use the domain nature of service

4.3.2. Prototyping

While for long-term maintainability we do recommend the naming conventions described above,
you can get away with far fewer services when just prototyping a domain.

If the domain service nature is not specified (or is left to its default, VIEW), then the service’s actions
will appear in the UI both as menu items and as contributions (and the service can of course be
injected into other domain objects for programmatic invocation).

Later on it is easy enough to refactor the code to tease apart the different responsibilities.

4.3.3. Scoped services

By default all domain services are considered to be singletons, and thread-safe.

Sometimes though a service’s lifetime is applicable only to a single request; in other words it is
request-scoped.

The CDI annotation @javax.enterprise.context.RequestScoped is used to indicate this fact:

@javax.enterprise.context.RequestScoped
public class MyService extends AbstractService {
    ...
}

The framework provides a number of request-scoped services, include a Scratchpad service query
results caching through the QueryResultsCache, and support for co-ordinating bulk actions through
the ActionInvocationContext service.  See the domain services reference guide for further details.
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4.3.4. Registering domain services

The easiest way to register domain services is using AppManifest to specify the modules which
contain @DomainService-annotated classes.

For example:

public class MyAppManifest implements AppManifest {
    public List<Class<?>> getModules() {
        return Arrays.asList(
                ToDoAppDomainModule.class,
                ToDoAppFixtureModule.class,
                ToDoAppAppModule.class,
                org.isisaddons.module.audit.AuditModule.class);
    }
    ...
}

will load all services in the packages underneath the four modules listed.

An alternative (older) mechanism is to registered domain services in the isis.properties

configuration file, under isis.services key (a comma-separated list); for example:

isis.services = com.mycompany.myapp.employee.Employees\,
                com.mycompany.myapp.claim.Claims\,
                ...

This will then result in the framework instantiating a single instance of each of the services listed.

If all services reside under a common package, then the isis.services.prefix can specify this
prefix:

isis.services.prefix = com.mycompany.myapp
isis.services = employee.Employees,\
                claim.Claims,\
                ...

This is quite rare, however; you will often want to use default implementations of domain services
that are provided by the framework and so will not reside under this prefix.

Examples of framework-provided services (as defined in the applib) include clock, auditing,
publishing, exception handling, view model support, snapshots/mementos, and user/application
settings management; see the domain services reference guide for further details.

4.3.5. Initialization

Services can optionally declare lifecycle callbacks to initialize them (when the app is deployed) and
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to shut them down (when the app is undeployed).

An Apache Isis session is available when initialization occurs (so services can interact with the
object store, for example).

The framework will call any public method annotated with @PostConstruct with either no
arguments of an argument of type Map<String,String>

or

In the latter case, the framework passes in the configuration (isis.properties and any other
component-specific configuration files).

Shutdown is similar; the framework will call any method annotated with @PreDestroy.

4.3.6. The getId() method

Optionally, a service may provide a getId() method.  This method returns a logical identifier for a
service, independent of its implementation.

4.4. Object Management (CRUD)

 TODO

4.4.1. Instantiating and Persisting Objects

 TODO - using DomainObjectContainer's support for  creation and persistence

4.4.2. Finding Objects

 TODO - using DomainObjectContainer

Using DataNucleus type-safe queries

 TODO - as described here

4.4.3. Deleting Objects

 TODO using DomainObjectContainer's support for  persistence

4.5. Entity Relationships

 TODO
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4.5.1. Mandatory and Optional

 TODO

4.5.2. 1-m bidir relationships

When an object is added to a 1:m bidirectional relationship, the child object must refer to the
parent and the child must be added to the parent’s children collection.

If there were no database involved then we would have recommended that you use the mutual
registration pattern to ensure that both the parent and child are updated correctly.  (The  modify…()

and clear…() supporting methods were introduced in the framework primarily to help support
implement the mutual registration pattern.

However, in a relational database, these two operations in the domain object model correspond
simply to updating the foreign key of the child table to reference the parent’s primary key.

So long as the parent’s children collection is a java.util.Set (rather than a Collection or a List), the
JDO Objectstore will automatically maintain both sides of the relationship. All that is necessary is to
set the child to refer to the parent.

For example, all you need write is:

public class Department {
    @javax.jdo.annotations.Persistent(mappedBy="department") ①
    private SortedSet<Employee> employees = new TreeSet<Employee>();

    public SortedSet<Employee> getEmployees() { ... }
    public void setEmployees(SortedSet<Employee> employees) { ... }
    ...
}
public class Employee {
    private Department department;
    public Department getDepartment() { ... }
    public void setDepartment(Department department) { ... }
    ...
}

① it’s the mappedBy attribute that tells DataNucleus this is a bidirectional relationship.  The value
"department" refers to the Employee#department property.

Moreover, when maintaining a bidirectional 1-n relationship that is automatically managed by
DataNucleus, it’s preferred to "add" to the parent’s child collection, don’t set the parent on the child.



If you don’t do this then you may hit a NullPointerException. The above idiom
fixes the issue.

For more information, see this thread on the Apache Isis users mailing list,
including this message with the above recommendation.
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

In fact, not only do you not need to manually maintain the relationship, we have
noted on at least one occasion a subtle error if the code is programmatically
added.

The error in that case was that the same object was contained in the parents
collection. This of course should not happen for a TreeSet. However,
JDO/DataNucleus replaces the TreeSet with its own implementation, and (either
by design or otherwise) this does not enforce Set semantics.

The upshot is that you should NEVER programmatically add the child object to the
parent’s collection if using JDO Objectstore.

4.6. Contributed Members


TODO - generalize to discussion on contributed collections/properties; update to
new annotations

Any n-parameter action provided by a service will automatically be contributed to the list of actions
for each of its (entity) parameters. From the viewpoint of the entity the action is called a
contributed action.

For example, given a service:

public interface Library {
    public Loan borrow(Loanable l, Borrower b);
}

and the entities:

public class Book implements Loanable { ... }

and

public class LibraryMember implements Borrower { ... }

then the borrow(…) action will be contributed to both Book and to LibraryMember.

This is an important capability because it helps to decouple the concrete classes from the services.

If necessary, though, this behaviour can be suppressed by annotating the service action with
@org.apache.isis.applib.annotations.NotContributed.

For example:
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public interface Library {
    @NotContributed
    public Loan borrow(Loanable l, Borrower b);
}

If annotated at the interface level, then the annotation will be inherited by every concrete class.
Alternatively the annotation can be applied at the implementation class level and only apply to that
particular implementation.

Note that an action annotated as being @NotContributed will still appear in the service menu for the
service. If an action should neither be contributed nor appear in service menu items, then simply
annotate it as @Hidden.

4.6.1. Contributed Action

 TODO

4.6.2. Contributed Property

 TODO

4.6.3. Contributed Collection

 TODO

4.7. Business Rules

 TODO

4.7.1. Visibility ("see it")

 TODO - hide…()

Hide a Property

Hide a Collection

Hide an Action

Hide a Contributed Property, Collection or Action

All Members Hidden
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4.7.2. Usability ("use it")

 TODO - disable…()

Disable a Property

Disable a Collection

Disable an Action

Disable a Contributed Property, Collection or Action

All Members Unmodifiable (Disabling the Edit Button)

Sometimes an object is unmodifiable.

In the Wicket viewer this means disabling the edit button.

Declarative

@DomainObject(editing=…)

Imperative

4.7.3. Validity ("do it")

 TODO - validate…(), validateAddTo…(), validateRemoveFrom…() and validate()

Validate (change to) a Property

Validate (adding or removing from) a Collection

Validate (arguments to invoke) an Action

Validating a Contributed Property, Collection or Action

Declarative validation

 TODO - using @Parameter#mustSatisfy(), @Property#mustSatisfy()

4.8. Derived Members

 TODO

4.8.1. Derived Property

 TODO
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4.8.2. Derived Collection

 TODO

While derived properties and derived collections typically "walk the graph" to associated objects,
there is nothing to prevent the returned value being the result of invoking a repository (domain
service) action.

For example:

public class Customer {
    ...
    public List<Order> getMostRecentOrders() {
        return orderRepo.findMostRecentOrders(this, 5);
    }
}

4.8.3. Trigger on property change

 TODO - modify…(), clear…()

4.8.4. Trigger on collection change

 TODO - addTo…(), removeFrom…()

4.9. Drop Downs and Defaults

 TODO

4.9.1. For Properties

 TODO

Choices for Property

 TODO - choices…()

Auto-complete for property

 TODO - autoComplete…()

Default for property

 TODO -  default…()
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4.9.2. For Action Parameters

 TODO

Choices for action parameter

 TODO - choices…()

Dependent choices for action params

 TODO - choices…()

Auto-complete for action param

 TODO - autoComplete…()

Default for action param

 TODO -  default…()

4.9.3. For both Properties and Action Parameters

 TODO

Drop-down for limited number of instances

 TODO - @DomainObject#bounded()

Auto-complete (repository-based)

@DomainObject#autoCompleteRepository()

4.10. Bulk Actions

 TODO - @Action#invokeOn()

4.11. Collections of values
Although in Apache Isis you can have properties of either values (string, number, date etc) or of
(references to other) entities, with collections the framework (currently) only supports collections
of (references to) entities.  That is, collections of values (a bag of numbers, say) are not supported.

However, it is possible to simulate a bag of numbers using view models.
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4.11.1. View Model

 TODO

4.11.2. Persistence Concerns


TODO -  easiest to simply store using DataNucleus' support for collections, marked
as @Programmatic so that it is ignored by Apache Isis.  Alternatively can store as
json/xml in a varchar(4000) or clob and manually unpack.

4.12. Subclass properties in tables
Suppose you have a hierarchy of classes where a property is derived and abstract in the superclass,
concrete implementations in the subclasses. For example:

public abstract class LeaseTerm {
    public abstract BigDecimal getEffectiveValue();
    ...
}

public class LeaseTermForIndexableTerm extends LeaseTerm {
    public BigDecimal getEffectveValue() { ... }
    ...
}

Currently the Wicket viewer will not render the property in tables (though the property is correctly
rendered in views).

 For more background on this workaround, see ISIS-582.

The work-around is simple enough; make the method concrete in the superclass and return a
dummy implementation, eg:

public abstract class LeaseTerm {
    public BigDecimal getEffectiveValue() {
        return null;        // workaround for ISIS-582
    }
    ...
}

Alternatively the implementation could throw a RuntimeException, eg

throw new RuntimeException("never called; workaround for ISIS-582");
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Chapter 5. Object Layout
In implementing the naked objects pattern, Apache Isis aims to infer as much information from the
domain classes as possible.  Nevertheless, some metadata relating solely to the UI is inevitably
required.

This chapter describes how this is done both for domain objects — statically or dynamically — and
for the application menu bar (containing domain service' actions).

5.1. Static Object Layout
Metadata providing UI hints can be specified either statically, using annotations, or dynamically,
using either a layout.xml file or a .layout.json file.

This section describes the static approach, using annotations.


Tabs and tabgroups are only supported using layout.xml files; they are not
supported by annotations.

5.1.1. @MemberOrder

The @MemberOrder  annotation is used to specify the relative order of domain class properties,
collections and actions.

The annotation defines two attributes, name() and sequence().  Their usage depends on the member
type:

• for properties, the name() is used to group properties together into a member group (also called
a property group or a fieldset.  The sequence() then orders properties within these groups. If no
name() is specified then the property is placed in a fallback "General" group, called "General".

The name of these member groups/fieldsets are then referenced by @MemberGroupLayout.

• for collections, the name() attribute is (currently) unused.  The sequence() orders collections
relative to one another

• for actions, the name() attribute associates an action with either a property or with a collection.

• If the name() attribute matches a property name, then the action’s button is rendered close to
the property, according to @ActionLayout#position() attribute.

• On the other hand if the `name() attribute matches a collection name, then the action’s
button is rendered on the collection’s header.

• If there is no name() value, then the action is considered to pertain to the object as a whole,
and its button is rendered close to the object’s icon and title.

Within any of these, the sequence() then determines the relative ordering of the action with respect
to other actions that have been similarly associated with properties/collections or left as "free-
standing".
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For example:

public class ToDoItem {
    @MemberOrder(sequence="1")
    public String getDescription() { ... }
    @MemberOrder(sequence="2")
    public String getCategory() { ... }
    @MemberOrder(sequence="3")
    public boolean isComplete() { ... }
    @MemberOrder(name="Detail", sequence="1")
    public LocalDate getDueBy() { ... }
    @MemberOrder(name="Detail", sequence="2")
    public BigDecimal getCost() { ... }
    @MemberOrder(name="Detail", sequence="4")
    public String getNotes() { ... }
    @MemberOrder(name="Misc", sequence="99")
    public Long getVersionSequence() { ... }
    ...
}

This defines three property (or member) groups, "General", "Detail" and "Misc"; "General" is the
default if no name attribute is specified. Properties in the same member group are rendered
together, as a fieldset.

In addition, actions can optionally be associated (rendered close to) either properties or actions.
This is done by overloading the @MemberOrder's name() attribute, holding the value of the property or
collection.

For example:

public class ToDoItem {
    @MemberOrder(sequence="3")
    public boolean isComplete() { ... }
    @MemberOrder(name="complete", sequence="1")
    public ToDoItem completed() { ...}
    @MemberOrder(name="complete", sequence="2")
    public ToDoItem notYetCompleted() { ...}

    @MemberOrder(sequence="1")
    public SortedSet<ToDoItem> getDependencies() { ... }
    @MemberOrder(name="dependencies", sequence="1")
    public ToDoItem add(ToDoItem t) { ...}
    @MemberOrder(name="dependencies", sequence="2")
    public ToDoItem remove(ToDoItem t) { ...}
    ...
}

will associate the completed() and notYetCompleted() actions with the complete property, and will
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associate the add() and remove() actions with the dependencies collection.

The value of sequence() is a string.  The simplest convention (as shown in the example above) is to
use numbers — 1, 2, 3 — though it is a better idea to leave gaps in the numbers — 10, 20, 30
perhaps — such that a new member may be added without having to edit existing numbers.

Even better is to adopt the 'dewey-decimal' notation — 1, 1.1, 1.2, 2, 3, 5.1.1, 5.2.2, 5.2, 5.3 — which
allows for an indefinite amount of future insertion.  It also allows subclasses to insert their class
members as required.

5.1.2. @MemberGroupLayout

The @MemberGroupLayout annotation specifies the relative positioning of property groups/fieldsets as
being either in a left column, a middle column or in a right column.  The annotation also specifies
the relative width of the columns.

The property groups/fieldsets in this case are those that are inferred from the @MemberOrder#name()
attribute.



It is also possible to combine @MemberOrder with dynamic layouts, either using
XML or JSON.  The layout file defines only the regions of a grid structure
(fieldsets/columns etc), but does not specify the properties/collections/actions
within those grid regions.  The @MemberOrder annotation in effect "binds" the
properties or collections to those regions of the grid.

When dynamic layouts are used this way, the @MemberGroupLayout annotation is
essentially ignored, but the metadata from the @MemberOrder annotation (and the
other layout annotations, @ActionLayout, @PropertyLayout and @CollectionLayout)
are all still honoured.

For example:

@MemberGroupLayout(
     columnSpans={3,3,0,6},
     left={"General", "Misc"},
     middle="Detail"
 )
public class ToDoItem {
    ...
}

Four values are given in the columnSpans attribute. The first three are the relative widths of the
three columns of property groups. The fourth, meanwhile, indicates the width of a final column
that holds all the collections of the object.

The values of these spans are taken as proportions of 12 virtual columns across the page (this taken
from the Bootstrap library).

For example:
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• {3,3,0,6} indicates:

• a left column of properties taking up 25% of the width

• a middle column of properties taking up 25% of the width

• a right column of collections taking up 50% of the width

• {2,6,0,4} indicates:

• a left column of properties taking up ~16% of the width

• a middle column of properties taking up 50% of the width

• a right column of collections taking up ~33% of the width

• {2,3,3,4} indicates:

• a left column of properties taking up ~16% of the width

• a middle column of properties taking up 25% of the width

• a right column of properties taking up 25% of the width

• a far right column of collections taking up ~33% of the width

If the sum of all the columns exceeds 12, then the collections are placed underneath the properties,
taking up the full span. For example:

• {4,4,4,12} indicates:

• a left column of properties taking up ~33% of the width

• a middle column of properties taking up ~33% of the width

• a right column of properties taking up ~33% of the width

• the collections underneath the property columns, taking up the full width

5.1.3. Example Layouts

Below are sketches for the layout of the ToDoItem class of the Isis addons example todoapp (not
ASF):

The first divides the properties into two equal sized columns (6-6-0) and puts the collections
underneath (12):
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The next divides the collections into three equal sized columns (4-4-4) and again puts the collections
underneath (12):
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The last puts the properties into a single column (4-0) and places the collections into the other
larger column (8-0):
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5.1.4. Other Annotations

As of 1.8.0, all the layout annotations have been consolidated into the various XxxLayout

annotations: @ActionLayout @CollectionLayout,  @DomainObjectLayout,  @DomainServiceLayout,
@ParameterLayout, @PropertyLayout, and @ViewModelLayout

5.2. Dynamic (XML) Layout
Metadata providing UI hints can be specified either statically, using annotations, or dynamically
using an Xxx.layout.xml file (where Xxx is the entity or view model object to be rendered).

The Xxx.layout.xml file is just the serialized form of a Grid layout class defined within Apache Isis'
applib.  These are JAXB-annotated classes with corresponding XSD schemas; the upshot of that is
that IDEs such as IntelliJ and Eclipse can provide "intellisense", making iteasy to author such layout
files.

It is also possible to download an initial .layout.xml - capturing any existing layout metadata - using
the LayoutService (exposed on the prototyping menu) or using a mixin action contributed to every
domain object.
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
It is also possible to describe dynamic layouts using a .layout.json file, as
discussed here.  The .layout.json file should be considered as deprecated: the
.layout.xml file also enables much more sophisticated layouts than those afforded
by .layout.json.

5.2.1. Grids vs Components

The XML file distinguishes between two types of element:

• those that define a grid structure, of: rows, columns, tab groups and tabs.

The rows and columns are closely modelled on Bootstrap 3 (used in the implementation of the
Wicket viewer).

• those that defines common components, of: fieldsets (previously called member groups or
property groups), properties, collections, actions and also the title/icon of the domain object
itself.

More information about these classes can be found in the reference guide.  More information on
Bootstrap 3’s grid system can be found here.

5.2.2. Screencast

This screencast describes the feature.

5.2.3. Examples

Probably the easiest way to understand dynamic XML layouts is by example.  For this we’ll use the
ToDoItem from the (non-ASF) Isis addons' todoapp:
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Namespaces

First things first; every .layout.xml file must properly declare the XSD namespaces and schemas.
There are two: one for the grid classes, and one for the common component classes:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bs3:grid
  xsi:schemaLocation="http://isis.apache.org/applib/layout/component
                      http://isis.apache.org/applib/layout/component/component.xsd
                      http://isis.apache.org/applib/layout/grid/bootstrap3
 
http://isis.apache.org/applib/layout/grid/bootstrap3/bootstrap3.xsd"
  xmlns:bs3="http://isis.apache.org/applib/layout/grid/bootstrap3"
  xmlns:c="http://isis.apache.org/applib/layout/component"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    ...
</bs3:grid>

Most IDEs will automatically download the XSD schemas from the specified schema locations,
thereby providing "intellisense" help as you edit the file.

87

images/ugfun/_ugfun_object-layout_dynamic_xml/ToDoItem.png


Rows, full-width cols, and tabs

The example layout consists of three rows: a row for the object/icon, a row containing a properties,
and a row containing collections.   In all three cases the row contains a single column spanning the
full width of the page.  For the property and collection rows, the column contains a tab group.

This corresponds to the following XML:

    <bs3:row>
        <bs3:col span="12" unreferencedActions="true">
            <c:domainObject bookmarking="AS_ROOT"/>
        </bs3:col>
    </bs3:row>
    <bs3:row>
        <bs3:col span="12">
            <bs3:tabGroup>
                <bs3:tab name="Properties">...</bs3:tab>
                <bs3:tab name="Other">...</bs3:tab>
                <bs3:tab name="Metadata">...</bs3:tab>
            </bs3:tabGroup>
        </bs3:col>
    </bs3:row>
    <bs3:row>
        <bs3:col span="12">
            <bs3:tabGroup unreferencedCollections="true">
                <bs3:tab name="Similar to">...</bs3:tab>
                <bs3:tab name="Dependencies">...</bs3:tab>
            </bs3:tabGroup>
        </bs3:col>
    </bs3:row>

You will notice that one of the columns has an unreferencedActions attribute, while one of the
tabGroups has a similar unreferencedCollections attribute.  This topic is discussed in more detail
below.

Fieldsets

The first tab containing properties is divided into two columns, each of which holds a single fieldset
of multiple properties.  Those properties in turn can have associated actions.

This corresponds to the following XML:

88



            <bs3:tab name="Properties">
                <bs3:row>
                    <bs3:col span="6">
                        <c:fieldSet name="General" id="general"
unreferencedProperties="true">
                            <c:action id="duplicate" position="PANEL_DROPDOWN"/>
                            <c:action id="delete"/>
                            <c:property id="description"/>
                            <c:property id="category"/>
                            <c:property id="subcategory">
                                <c:action id="updateCategory"/>
                                <c:action id="analyseCategory" position="RIGHT"/>
                            </c:property>
                            <c:property id="complete">
                                <c:action id="completed" cssClassFa="fa-thumbs-up"/>
                                <c:action id="notYetCompleted" cssClassFa="fa-thumbs-
down"/>
                            </c:property>
                        </c:fieldSet>
                    </bs3:col>
                    <bs3:col span="6">
                        ...
                    </bs3:col>
                </bs3:row>
            </bs3:tab>

The tab defines two columns, each span of 6 (meaning half the width of the page).

In the first column there is a single fieldset.  Notice how actions - such as duplicate and delete - can
be associated with this fieldset directly, meaning that they should be rendered on the fieldset’s top
panel.

Thereafter the fieldset lists the properties in order.  Actions can be associated with properties too;
here they are rendered underneath or to the right of the field.

Note also the unreferencedProperties attribute for the fieldset; this topic is discussed in more detail
below.

Collections

In the final row the collections are placed in tabs, simply one collection per tab.  This corresponds
to the following XML:
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                <bs3:tab name="Similar to">
                    <bs3:row>
                        <bs3:col span="12">
                            <c:collection defaultView="table" id="similarTo"/>
                        </bs3:col>
                    </bs3:row>
                </bs3:tab>
                <bs3:tab name="Dependencies">
                    <bs3:row>
                        <bs3:col span="12">
                            <c:collection defaultView="table" id="dependencies">
                                <c:action id="add"/>
                                <c:action id="remove"/>
                            </c:collection>
                        </bs3:col>
                    </bs3:row>
                </bs3:tab>

As with properties, actions can be associated with collections; this indicates that they should be
rendered in the collection’s header.

5.2.4. Unreferenced Members

As noted in the preceding discussion, several of the grid’s regions have either an
unreferencedActions, unreferencedCollections or unreferencedProperties attribute.

The rules are:

• unreferencedActions attribute can be specified either on a column or on a fieldset. 

It would normally be typical to use the column holding the <domainObject/> icon/title, that is as
shown in the example.  The unreferenced actions then appear as top-level actions for the
domain object.

• unreferencedCollections attribute can be specified either on a column or on a tabgroup.

If specified on a column, then that column will contain each of the unreferenced collections,
stacked one on top of the other.  If specified on a tab group, then a separate tab will be created
for each collection, with that tab containing only that single collection.

• unreferencedProperties attribute can be specified only on a fieldset.

The purpose of these attributes is to indicate where in the layout any unreferenced members
should be rendered.  Every grid must nominate one region for each of these three member types,
the reason being that to ensure that the layout can be used even if it is incomplete with respect to
the object members inferred from the Java source code.  This might be because the developer forgot
to update the layout, or it might be because of a new mixin (property, collection or action)
contributed to many objects.

The framework ensures that in any given grid exactly one region is specified for each of the three
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unreferenced… attributes.  If the grid fails this validation, then a warning message will be displayed,
and the invalid XML logged.  The layout XML will then be ignored.

5.2.5. More advanced features

This section decribes a number of more features useful in more complex layouts.

Multiple references to a feature

One feature worth being aware of is that it is possible to render a single feature more than once.

For example, the dashboard home page for the (non-ASF) Isis addons' todoapp shows the "not yet
complete" collection of todo items twice, once as a table and also as a calendar:

This is accomplished using the following (slightly abbreviated) layout:
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<grid ...>
    <row>
        <col span="2" unreferencedActions="true">
            ...
        </col>
        <col span="5" unreferencedCollections="true" cssClass="custom-padding-top-20">
            <ns2:collection id="notYetComplete" defaultView="calendar"/>
①
        </col>
        <col span="5" cssClass="custom-padding-top-20">
            <ns2:collection id="notYetComplete" defaultView="table" paged="5"/>
②
            <ns2:collection id="complete" defaultView="table"/>
        </col>
        <col span="0">
            <ns2:fieldSet name="General" id="general" unreferencedProperties="true"/>
        </col>
    </row>
</grid>

① render the collection in "calendar" view

② also render the collection in "table" view

In the middle column the notYetComplete collection is rendered in "calendar" view, while in the
right-most column it is rendered in "table" view.

It is also possible to reference object properties and actions more than once.  This might be useful
for a complex domain object with multiple tabs; certain properties or actions might appear on a
summary tab (that shows the most commonly used info), but also on detail tabs.

Custom CSS

The ToDoApp’s dashboard (above) also shows how custom CSS styles can be associated with specific
regions of the layout:
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<grid ...>
    <row>
        <col span="2" unreferencedActions="true">
            <ns2:domainObject/>
            <row>
                <col span="12" cssClass="custom-width-100">
①
                    <ns2:action id="exportToWordDoc"/>
                </col>
            </row>
            ...
        </col>
        <col span="5" unreferencedCollections="true" cssClass="custom-padding-top-20">
②
            ...
        </col>
        <col span="5" cssClass="custom-padding-top-20">
③
            ...
        </col>
    </row>
</grid>

① Render the column with the custom-width-100 CSS class.

② Render the column with the custom-padding-top-20 CSS class.

③ Ditto

For example the custom-width-100 style is used to "stretch" the button for the exportToWordDoc action
in the left-most column.  This is accomplished with the following CSS in application.css:

.custom-width-100 ul,

.custom-width-100 ul li,

.custom-width-100 ul li a.btn {
    width: 100%;
}

Similarly, the middle and right columns are rendered using the custom-padding-top-20 CSS class.
This shifts them down from the top of the page slightly, using the following CSS:

.custom-padding-top-20 {
    padding-top: 20px;
}

5.2.6. Migrating from earlier versions

As noted earlier on, it is possible to download layout XML files using the LayoutService (exposed on
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the prototyping menu); this will download a ZIP file of layout XML files for all domain entities and
view models.  Alternatively the layout XML for a single domain object can be downloaded using the
mixin action (contributed to every domain object).

There are four "styles":

• current

• complete

• normalized

• minimal

Ignorig the "current" style (which merely downloads the currently cached layout), the other three
styles allow the developer to choose how much metadata is to be specified in the XML, and how
much (if any) will be obtained elsewhere, either from annotations in the metamodel or from an
earlier .layout.json file if present.  The table below summarises the choices:

Table 2. Table caption

Style @MemberGroupLayout @MemberOrder

@ActionLayout,
@PropertyLayout,
@CollectionLayout

COMPLETE serialized as XML serialized as XML serialized as XML

NORMALIZED serialized as XML serialized as XML not in the XML

MINIMAL serialized as XML not in the XML not in the XML

As a developer, you therefore have a choice as to how you provide the metadata required for
customised layouts:

• if you want all layout metadata to be read from the .layout.xml file, then download the
"complete" version, and copy the file alongside the domain class.  You can then remove all
@MemberGroupLayout, @MemberOrder, @ActionLayout, @PropertyLayout and @CollectionLayout

annotations from the source code of the domain class.

• if you want to use layout XML file to describe the grid (columns, tabs etc) and specify which
object members are associated with those regions of the grid, then download the "normalized"
version.  You can then remove the @MemberGroupLayout and @MemberOrder annotations from the
source code of the domain class, but retain the @ActionLayout, @PropertyLayout and
@CollectionLayout annotations.

• if you want to use layout XML file ONLY to describe the grid, then download the "minimal"
version.  The grid regions will be empty in this version, and the framework will use the
@MemberOrder annotation to bind object members to those regions.  The only annotation that can
be safely removed from the source code with this style is the @MemberGroupLayout annotation.

Download either for a single domain object, or download all domain objects (entities and view
models).
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5.2.7. Domain Services

For more information about layouts, see:

• LayoutService (whose functionality is exposed on the prototyping menu as an action) and lso the
a mixin action

• GridService and its supporting services, GridLoaderService and GridSystemService

• grid layout classes, defined in the Apache Isis applib

5.2.8. Required updates to the dom project’s pom.xml

Any .layout.xml files must be compiled and available in the classpath.  Ensure the following is
defined in the dom project’s pom.xml:

<resources>
    <resource>
        <filtering>false</filtering>
        <directory>src/main/resources</directory>
    </resource>
    <resource>
        <filtering>false</filtering>
        <directory>src/main/java</directory>
        <includes>
            <include>**</include>
        </includes>
        <excludes>
            <exclude>**/*.java</exclude>
        </excludes>
    </resource>
</resources>

If using an Apache Isis SimpleApp archetype, then the POM is already correctly configured.

5.3. Dynamic (JSON) Layout
Metadata providing UI hints can be specified either statically, using annotations, or dynamically,
using either a layout.xml file or (as described here) a .layout.json file.



The use of dynamic layouts through the .layout.json is DEPRECATED.  Instead,
use the .layout.xml file, which enables much more sophisticated custom layouts
than those provided by .layout.json.

It is possible to download initial .layout.xml files - which will capture all the
metadata originally in the .layout.json file - using the LayoutService (exposed as
an action on the prototyping menu). The .layout.json file will be ignored once a
.layout.xml file is present.
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5.3.1. JSON layout file

The JSON layout file for class Xxx takes the name Xxx.layout.json, and resides in the same package
as the class.

The format of the file is:

{
  "columns": [                                // list of columns
    {
      "span": 6,                              // span of the left-hand property column
      "memberGroups": {                       // ordered map of member (property)
groups
        "General": {                          // member group name
          "members": {
            "description": {                  // property, no associated actions, but
with UI hint
              "propertyLayout": {
                "typicalLength": 50           // UI hint for size of field (no longer
used in ISIS 1.8.0)
              }
            },
            "category": {},
            "complete": {                     // property, with associated actions
              "propertyLayout": {
                "describedAs": "Whether this todo item has been completed"
              },
              "actions": {
                "completed": {
                  "actionLayout": {
                    "named": "Done",          // naming UI hint
                    "cssClass": "x-highlight" // CSS UI hint
                  }
                },
                "notYetCompleted": {
                  "actionLayout": {
                    "named": "Not done"
                  }
                }
              }
            }
          },
          "Misc": {
            "members": {
              "notes": {
                "propertyLayout": {
                  "multiLine": 5              // UI hint for text area
                }
              },
              "versionSequence": {}
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            }
          }
        }
      }
    },
    {
      "span": 6,                              // span of the middle property column
      "memberGroups": { ... }
    },
    {
      "span": 0                               // span of the right property column (if
any)
    },
    {
      "span": 6,
      "collections": {                        // ordered map of collections
        "dependencies": {                     // collection, with associated actions
          "collectionLayout": {
            "paged": 10,                      // pagination UI hint
            "render": "EAGERLY"               // lazy-loading UI hint
          },
          "actions": {
            "add":{},
            "delete": {}
          },
        },
        "similarItems": {}                    // collection, no associated actions
      }
    }
  ],
  "actions": {                                // actions not associated with any
member
    "delete": {},
    "duplicate": {
      "actionLayout": {
        "named": {
          "value": "Clone"
        }
      }
    }
  }
}

Although advisable, it is not necessary to list all class members in this file. Any members not listed
with be ordered according either to annotations (if present) or fallback/default values.

Note also that the layout file may contain entries for contributed associations and actions; this
allows each contributee classes to define their own layout for their contributions, possibly
overriding any static metadata on the original domain service contributor.
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5.3.2. Downloading an initial layout

The fastest way to get started is to use the (non-ASF) Isis addons' devutils module to download the
layout file (derived from any existing static metadata defined by annotations).

5.3.3. Required updates to the dom project’s pom.xml

Any .layout.json files must be compiled and available in the classpath.  Ensure the following is
defined in the dom project’s pom.xml:

<resources>
    <resource>
        <filtering>false</filtering>
        <directory>src/main/resources</directory>
    </resource>
    <resource>
        <filtering>false</filtering>
        <directory>src/main/java</directory>
        <includes>
            <include>**</include>
        </includes>
        <excludes>
            <exclude>**/*.java</exclude>
        </excludes>
    </resource>
</resources>

If using an Apache Isis SimpleApp archetype, then the POM is already correctly configured.

5.4. Application Menu Layout
The actions of domain services are made available as an application menu bar. By default each
domain service corresponds to a single menu on this menu bar, with its actions as the drop-down
menu items. This is rarely exactly what is required, however. The @MemberOrder and
@DomainServiceLayout annotations can be used to rearrange the placement of menu items.

The screenshots below are taken from Estatio, an open source estate management application built
using Apache Isis.

5.4.1. @DomainServiceLayout

Menus for domain services can be placed either on a primary, secondary or tertiary menu bar.
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Within a single top-level menu (eg "Fixed Assets") there can be actions from multiple services. The
Wicket viewer automatically adds a divider between each:

In the example above the top-level menu combines the actions from the Properties, Units and
FixedAssetRegistrations services. The Properties service is annotated:

@DomainServiceLayout(
        named="Fixed Assets",
        menuBar = DomainServiceLayout.MenuBar.PRIMARY,
        menuOrder = "10.1"
)
public class Properties ... { ... }

while the Units service is annotated:
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@DomainServiceLayout(
        named="Fixed Assets",
        menuBar = DomainServiceLayout.MenuBar.PRIMARY,
        menuOrder = "10.2"
)
public class Units ... { ... }

and similarly FixedAssetRegistrations is annotated:

@DomainServiceLayout(
        named="Fixed Assets",
        menuBar = DomainServiceLayout.MenuBar.PRIMARY,
        menuOrder = "10.3"
)
public class FixedAssetRegistrations ... { ... }

Note that in all three cases the value of the named attribute and the menuBar attribute is the same:
"Fixed Assets" and PRIMARY. This means that all will appear on a "Fixed Assets" menu in the
primary menu bar.

Meanwhile the value of menuOrder attribute is significant for two reasons:

• for these three services on the same ("Fixed Assets") top-level menu, it determines the relative
order of their sections (Properties first, then Units, then FixedAssetRegistrations)

• it determines the placement of the top-level menu itself ("Fixed Assets") with respect to other
top-level menus on the menu bar.

To illustrate this latter point, the next top-level menu on the menu bar, "Parties", is placed after
"Fixed Assets"  because the menuOrder of the first of its domain services, namely the Parties service,
is higher than that for  "Fixed Assets":

@DomainServiceLayout(
        named="Parties",
        menuBar = DomainServiceLayout.MenuBar.PRIMARY,
        menuOrder = "20.1"
)
public class Parties ... { ... }

Note that only the menuOrder of the first domain service is significant in placing the menus along the
menu bar; thereafter the purpose of the menuOrder is to order the menu services sections on the
menu itself.

5.4.2. Ordering menu actions

For a given service, the actions within a section on a menu is determined by the @MemberOrder
annotation. Thus, for the Units domain service, its actions are annotated:
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public class Units extends EstatioDomainService<Unit> {

    @MemberOrder(sequence = "1")
    public Unit newUnit( ... ) { ... }

    @MemberOrder(sequence = "2")
    public List<Unit> findUnits( ... ) { ... }

    @ActionLayout( prototype = true )
    @MemberOrder(sequence = "99")
    public List<Unit> allUnits() { ... }
    ...
}

Note that the last is also a prototype action (meaning it is only displayed in SERVER_PROTOTYPE
(=Wicket Development) mode). In the UI it is rendered in italics.

(It is possible to override this place of a given action by specifying @MemberOrder(name="…") where
the name is that of a top-level menu. Prior to 1.8.0 this was the only way of doing things, as of 1.8.0
its use is not recommended).

5.4.3. Tertiary menubar

The tertiary menu bar consists of a single unnamed menu, rendered underneath the user’s login,
top right. This is intended primarily for actions pertaining to the user themselves, eg their account,
profile or settings:

Domain services' actions can be associated with the tertiary menu using the same
@DomainServiceLayout annotation. For example, the updateEpochDate(…) and listAllSettings(…)

actions come from the following service:
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@DomainServiceLayout(
        menuBar = DomainServiceLayout.MenuBar.TERTIARY,
        menuOrder = "10.1"
)
public class EstatioAdministrationService ... {

    @MemberOrder(sequence = "1")
    public void updateEpochDate( ... ) { ... }

    @MemberOrder(sequence = "2")
    public List<ApplicationSetting> listAllSettings() { ... }
    ...
}

Because the number of items on the tertiary menu is expected to be small and most will pertain to
the current user, the viewer does not place dividers between actions from different services on the
tertiary menu.

5.4.4. Isis Add-on modules

Some of the (non-ASF) Isis Addons modules also provide services whose actions appear in top-level
menus.

The security's module places its domain service menus in three top-level menus:

• its ApplicationUsers, ApplicationRoles, ApplicationPermission, ApplicationFeatureViewModels and
ApplicationTenancies domain services are all grouped together in a single "Security" top-level
menu, on the SECONDARY menu bar

• its SecurityModuleAppFixturesService domain service, which allows the security modules' fixture
scripts to be run, is placed on a "Prototyping" top-level menu, also on the SECONDARY menu bar

• its MeService domain service, which provides the me() action, is placed on the TERTIARY menu
bar.

Meanwhile the devutils module places its actions - to download layouts and so forth - on a
"Prototyping" top-level menu, on the SECONDARY menu bar.

Currently there is no facility to alter the placement of these services. However, their UI can be
suppressed using security or using a vetoing subscriber.

5.5. Static vs Dynamic Layouts
Using dynamic object layouts using JSON has the huge benefit that the layout can be updated
without requiring a recompile of the code and redeploy of the app.  Many developers also find it
easier to rationalize about layout when all the hints are collated together in a single place (rather
than scattered across the class members as annotations).

Another benefit of dynamic layout is that UI hints can be provided for contributed associations and
actions that are synthesised at runtime.
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The main downsides of using dynamic layouts are a lack of typesafety (a typo will result in the
metadata not being picked up for the element) and syntactic fragility (an invalid JSON document
will result in no metadata for the entire class).

Also, dynamic layouts have no notion of inheritance, whereas the dewey-decimal format
@MemberOrder annotation allows the metadata of the subclass its superclasses to fit together
relatively seamlessly.

5.5.1. Best of both worlds?

Using the (non-ASF) Isis addons' jrebel plugin comes close to getting the best of both words:
metadata is specified in a type-safe way using annotations, but can be reloaded automatically.

The downsides are licensing cost, and also the fact that metadata for contributed actions in the
contributee class cannot be specified.

Another open source alternative that you might also like to explore is DCEVM; there’s a good write-
up on the IntelliJ blog.
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Chapter 6. FAQs
This chapter has FAQs (with solutions) for problems we’ve encountered ourselves or have been
raised on the Apache Isis mailing lists.

See also Restful Objects hints-n-tips.

6.1. Enabling Logging
Sometimes you just need to see what is going on. There are various ways in which logging can be
enabled, here are the ones we tend to use.

• In Apache Isis

Modify WEB-INF/logging.properties (a log4j config file)

• In DataNucleus

As per the DN logging page

• In the JDBC Driver

Configure log4jdbc JDBC rather than the vanilla driver (see WEB-

INF/persistor_datanucleus.properties) and configure log4j logging (see WEB-

INF/logging.properties).  There are examples of both in the SimpleApp archetype.

• In the database

Details below.

Database logging can be configured:

• for HSQLDB

by adding`;sqllog=3` to the end of the JDBC URL.

• for PostgreSQL:

Can change postgresql\9.2\data\postgresql.conf; see this article for details.

• for MS SQL Server Logging:

We like to use the excellent SQL Profiler tool.

6.2. Subtype not fully populated
Taken from this thread on the Apache Isis users mailing list…

If it seems that Apache Isis (or rather DataNucleus) isn’t fully populating domain entities (ie leaving
some properties as null), then check that your actions are not accessing the fields directly.  Use
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getters instead.  that is:


Properties of domain entities should always be accessed using getters.  The only
code that should access to fields should be the getters themselves.

Why so? Because DataNucleus will potentially lazy load some properties, but to do this it needs to
know that the field is being requested.  This is the purpose of the enhancement phase: the bytecode
of the original getter method is actually wrapped in code that does the lazy loading checking.  But
hitting the field directly means that the lazy loading code does not run.

This error can be subtle: sometimes "incorrect" code that accesses the fields will seem to work.  But
that will be because the field has been populated already, for whatever reason.

One case where you will find the issue highlighted is for subtype tables that have been mapped
using an inheritance strategy of NEW_TABLE, eg:

@javax.jdo.annotations.PersistenceCapable
@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.NEW_TABLE)
public class SupertypeEntity {
    ...
}

and then:

@javax.jdo.annotations.PersistenceCapable
@javax.jdo.annotations.Inheritance(strategy = InheritanceStrategy.NEW_TABLE)
public class SubtypeEntity extends SupertypeEntity {
    ...
}

This will generate two tables in the database, with the primary key of the supertype table
propagated as a foreign key (also primary key) of the subtype table (sometimes called "table per
type" strategy).  This means that DataNucleus might retrieve data from only the supertype table,
and the lazily load the subtype fields only as required.  This is preferable to doing a left outer join
from the super- to the subtype tables to retrieve data that might not be needed.

On the other hand, if the SUPERCLASS_TABLE strategy (aka "table per hierarchy" or roll-up) or the
SUBCLASS_TABLE strategy (roll-down) was used, then the problem is less likely to occur because
DataNucleus would obtain all the data for any given instance from a single table.

Final note: references to other objects (either scalar references or in collections) in particular
require that getters rather than fields to be used to obtain them: it’s hopefully obvious that
DataNucleus (like all ORMs) should not and will not resolve such references (otherwise, where to
stop… and the whole database would be loaded into memory).

In summary, there’s just one rule: always use the getters, never the fields.
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6.3. How parse images in RO viewer?
From this thread on the Apache Isis users mailing list:

• I am trying to display an image in a JavaScript client app, the image comes from an Isis RO web
service as a string, but it won’t show.  Is there something I should do to change the message?

The RO viewer returns the image as a string, in the form:

"Tacos.jpg:image/jpeg:/9j//4AAQSkZJRgABAQEAlgCWAAD/  ...."

This is in the form:

(filename):(mime type):(binary data in base64)

This is basically the Blob value type, in string form.

To use, split the parts then format the mime type and base64 data correctly before using as source
in an <img> tag.

6.4. Enhance only (IntelliJ)
From the Apache Isis mailing list is:

• Is there a simple way to make a run configuration in IntelliJ for running the datanucleus enhancer
before running integration test?

Yes, you can; here’s one way:

• Duplicate your run configuration for running the webapp

• the one where the main class is org.apache.isis.WebServer

• there’s a button for this on the run configurations dialog.

• then, on your copy change the main class to org.apache.isis.Dummy

6.5. Per-user Themes
From this thread on the Apache Isis users mailing list:

• Is it possible to have each of our resellers (using our Isis application) use there own
theme/branding with their own logo and colors? Would this also be possible for the login page,
possibly depending on the used host name?

Yes, you can do this, by installing a custom implementation of the Wicket Bootstrap’s
ActiveThemeProvider.

The Isis addons' todoapp (non-ASF) actually does this, storing the info via the Isis addons' settings
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module settings modules:

IActiveThemeProvider implementation

public class UserSettingsThemeProvider implements ActiveThemeProvider {
    ...
    @Override
    public ITheme getActiveTheme() {
        if(IsisContext.getSpecificationLoader().isInitialized()) {
            final String themeName = IsisContext.doInSession(new Callable<String>() {
                @Override
                public String call() throws Exception {
                    final Class<UserSettingsService> serviceClass =
UserSettingsService.class;
                    final UserSettingsService userSettingsService = lookupService
(serviceClass);
                    final UserSetting activeTheme = userSettingsService.find(
                            IsisContext.getAuthenticationSession().getUserName(),
ACTIVE_THEME);
                    return activeTheme != null ? activeTheme.valueAsString() : null;
                }
            });
            return themeFor(themeName);
        }
        return new SessionThemeProvider().getActiveTheme();
    }
    @Override
    public void setActiveTheme(final String themeName) {
        IsisContext.doInSession(new Runnable() {
            @Override
            public void run() {
                final String currentUsrName = IsisContext.getAuthenticationSession
().getUserName();
                final UserSettingsServiceRW userSettingsService =
                        lookupService(UserSettingsServiceRW.class);
                final UserSettingJdo activeTheme =
                        (UserSettingJdo) userSettingsService.find(currentUsrName,
ACTIVE_THEME);
                if(activeTheme != null) {
                    activeTheme.updateAsString(themeName);
                } else {
                    userSettingsService.newString(
                        currentUsrName, ACTIVE_THEME, "Active Bootstrap theme for
user", themeName);
                }
            }
        });
    }
    private ITheme themeFor(final String themeName) {
        final ThemeProvider themeProvider = settings.getThemeProvider();
        if(themeName != null) {
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            for (final ITheme theme : themeProvider.available()) {
                if (themeName.equals(theme.name()))
                    return theme;
            }
        }
        return themeProvider.defaultTheme();
    }
    ...
}

and

Using the ActiveThemeProvider

@Override
protected void init() {
    super.init();

    final IBootstrapSettings settings = Bootstrap.getSettings();
    settings.setThemeProvider(new BootswatchThemeProvider(BootswatchTheme.Flatly));

    settings.setActiveThemeProvider(new UserSettingsThemeProvider(settings));
}

6.6. How i18n the Wicket viewer?
From this thread on the Apache Isis users mailing list:

• I am trying to internationalize the label descriptions of form actions, eg those in
ActionParametersFormPanel.  Referencing those via their message id inside a .po file didn’t work
either.  Can this be done?

The above FAQ was raised against 1.10.0.  As of 1.11.0 (due to ISIS-1093) it is now possible to
internationalize both the Wicket viewer’s labels as well as the regular translations of the domain
object metadata using the .po translation files as supported by the TranslationService.

Full details of the msgIds that must be added to the translations.po file can be found in i18n section
of the beyond the basics guide.

In prior releases (1.10.0 and earlier) it was necessary to use  Wicket’s internationalization support,
namely resource bundles.  This is still supported (as a fallback):

• create a directory structure inside the webapp resource folder following that pattern
org.apache.isis.viewer.wicket.ui.components.actions

• Inside there create an equivalent ActionParametersFormPanel_xx_XX.properties or
ActionParametersFormPanel_xx.properties file for the various locales that you want to support
(eg ActionParametersFormPanel_en_UK.properties, ActionParametersFormPanel_en_US.properties,
ActionParametersFormPanel_de.properties and so on).
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6.7. How to handle void/null results
From this thread on the Apache Isis users mailing list:

• When using a void action, let’s say a remove action, the user is redirected to a page "no results".
When clicking the back button in the browser the user sees "Object not found" (since you’ve just
deleted this object).

• You can return a list for example to prevent the user from being redirect to a "No results" page, but
I think it’s not the responsibility of the controllers in the domain model.

• A solution could be that wicket viewer goes back one page when encountering a deleted object.
And refresh the current page when receiving a null response or invoking a void action.  But how to
implement this?

One way to implement this idea is to provide a custom implementation of the RoutingService SPI
domain service.  The default implementation will either return the current object (if not null), else
the home page (as defined by @HomePage) if one exists.

The following custom implementation refines this to use the breadcrumbs (available in the Wicket
viewer) to return the first non-deleted domain object found in the list of breadcrumbs:
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@DomainService(nature = NatureOfService.DOMAIN)
@DomainServiceLayout(menuOrder = "1")                                           ①
public class RoutingServiceUsingBreadcrumbs extends RoutingServiceDefault {
    @Override
    public Object route(final Object original) {
        if(original != null) {                                                  ②
            return original;
        }
        container.flush();                                                      ③

        final BreadcrumbModelProvider wicketSession =                           ④
            (BreadcrumbModelProvider) AuthenticatedWebSession.get();
        final BreadcrumbModel breadcrumbModel =
            wicketSession.getBreadcrumbModel();
        final List<EntityModel> breadcrumbs = breadcrumbModel.getList();

        final Optional<Object> firstViewModelOrNonDeletedPojoIfAny =
                breadcrumbs.stream()                                            ⑤
                .filter(entityModel -> entityModel != null)
                .map(EntityModel::getObject)                                    ⑥
                .filter(objectAdapter -> objectAdapter != null)
                .map(ObjectAdapter::getObject)                                  ⑦
                .filter(pojo -> !(pojo instanceof Persistable) ||
                                !((Persistable)pojo).dnIsDeleted())             ⑧
                .findFirst();

        return firstViewModelOrNonDeletedPojoIfAny.orElse(homePage());          ⑨
    }
    private Object homePage() {
        return homePageProviderService.homePage();
    }
    @Inject
    HomePageProviderService homePageProviderService;
    @Inject
    DomainObjectContainer container;
}

① override the default imlpementation

② if a non-null object was returned, then return this

③ ensure that any persisted objects have been deleted.

④ reach inside the Wicket viewer’s internals to obtain the list of breadcrumbs.

⑤ loop over all breadcrumbs

⑥ unwrap the Wicket viewer’s serializable representation of each domain object (EntityModel) to
the Isis runtime’s representation (ObjectAdapter)

⑦ unwrap the Isis runtime’s representation of each domain object (ObjectAdapter) to the domain
object pojo itself

⑧
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if object is persistable (not a view model) then make sure it is not deleted

⑨ return the first object if any, otherwise the home page object (if any).

Note that the above implementation uses Java 8, so if you are using Java 7 then you’ll need to
backport accordingly.

6.8. How to implement a spellchecker?
From this thread on the Apache Isis users mailing list:

• What is the easiest way to add a spell checker to the text written in a field in a domain object, for
instance to check English syntax?

One way to implement is to use the event bus:

• Set up a domain event subscriber that can veto the changes.

• if the change is made through an action, you can use @Action#domainEvent().

if if the change is made through an edit, you can use @Property#domainEvent().

You’ll need some way to know which fields should be spell checked.  Two ways spring to mind:

• either look at the domain event’s identifier

• or subclass the domain event (recommended anyway) and have those subclass events
implement some sort of marker interface, eg a SpellCheckEvent.

And you’ll (obviously) also need some sort of spell checker implementation to call.

6.9. How run fixtures on startup?
From this thread on the Apache Isis users mailing list:

• my fixtures have grown into a couple of files the application needs to read in when it starts the
first time (and possibly later on when the files content change).  What is the right way to do this?
Hook up into the webapp start? Use events?

The standard approach is to use fixture scripts.  These can be run in on start-up typically by being
specified in the AppManifest, see for example the SimpleApp archetype.

Alternatively just set "isis.fixtures" and "isis.persistor.datanucleus.install-fixtures" properties.

In terms of implementations, you might also want to check out the (non-ASF) Isis addons' excel
module, by using ExcelFixture and overriding ExcelFixtureRowHandler (same package).  An example
can be found in this (non ASF) contactapp, see ContactRowHandler.
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