Configuration Properties

Table of Contents

1. Configuration PrOPeITiesttt ettt ettt ettt 1
1.1, Other GUIAESot et 1
2. DEPlOYMENT TYPES . o vttt e 2
2.1. Using the WIcKet VIEWET e 2
2.2. Restful Objects VIEWET ONIYt e e 3
2.3. Overriding the deployment typeot i 3
3. Configuration Files e 4
4. SPeCIfYINgG COMPONEIITS.ttt t ettt ettt ettt e et ettt ettt 5
4.1. Viewer CONfigurationttt e et 6
5. ConfigUIING COTE . ..ottt ittt ettt e e e e 7
5.1. Filtering VISIDILITY . . . oo oottt e 12
5.2.0bJeCtS. @dTtiNg. oottt e 13
5.3. propertylayout.1abelPosition . ..ot e 13
6. Configuring DataNUCLeus.t e 14
6.1. Configuration Propertiesttt 14
6.2, PErSiSteNCe. XML, o\ttt e 15
6.3. Eagerly Registering ENtities.ottt i aa 15
6.4. Persistence by Reachability ... 15

6.5. USING INDI DAtaSOUICEottt ittt ittt ettt ettt eeaaan 17

Chapter 1. Configuration Properties

Apache Isis' own configuration properties are simple key-value pairs, typically held in the
WEBINF/isis.properties file and other related files. This guide describes how to configure an Apache
Isis application.

Configuration properties for the viewers can be found in the Wicket Viewer guide
and the RestfulObjects viewer guide. Likewise[details of configuring security
(Apache Shiro) can be found in the Security guide.

i

Also, note that by default the configuration values are part of the built WAR file.
Details on how to override these configuration properties externally for different
environments can be found in the Beyond the Basics guide, (deployment chapter).

1.1. Other Guides

Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures” guides.

The user guides available are:

* Fundamentals

* Wicket viewer

* Restful Objects viewer
* Security

» Testing

Beyond the Basics
The reference guides are:

* Annotations
* Domain Services

» Configuration Properties (this guide)

Classes, Methods and Schema

* Apache Isis Maven plugin
The remaining guides are:

* Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

* Committers' Guide (release procedures and related practices)

ugvw.pdf
ugvro.pdf
ugsec.pdf
ugbtb.pdf#_ugbtb_deployment
ugfun.pdf
ugvw.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgsvc.pdf
rgcms.pdf
rgmvn.pdf
dg.pdf
cgcom.pdf

Chapter 2. Deployment Types

Apache Isis distinguishes between the application being run in development mode vs running in
production mode. The framework calls this the "deployment type" (corresponding internally to the
DeploymentType class).

(For mostly historical reasons) development mode is actually called SERVER_PROTOTYPE, while
production mode is called just SERVER. (There is also a deprecated mode called SERVER_EXPLORATION;
for all intents and purposes this can considered as an alias of SERVER_PROTOTYPE).

When running in development/prototyping mode, certain capabilities are enabled; most notably
any actions restricted to prototyping mode (using @Action#irestrictTo()) will be available.

2.1. Using the Wicket Viewer

Most of the you’re likely to run Apache Isis using the Wicket viewer. In this case Apache Isis'
"deployment type" concept maps to Wicket’s "configuration” concept:

Table 1. Apache Isis' deployment type corresponds to Apache Wicket’s configuration

Apache Isis Apache Wicket Notes

(Deployment Type) (Configuration)

SERVER_PROTOTYPE development running in development/prototyping mode
SERVER deployment running in production mode

Wicket’s mechanism for specifying the "configuration" is to use a context parameter in web.xml;
Apache Isis automatically infers its own deployment type from this. In other words:

* to specify SERVER (production) mode, use:

web.xml

<context-param>
<param-name>confiquration</param-name>
<param-value>deployment</param-value>
</context-param>

* to specify SERVER_PROTOTYPING (development) mode, use:

web.xml

<context-param>
<param-name>configuration</param-name>
<param-value>deployment</param-value>
</context-param>

rgant.pdf#_rgant-Action_restrictTo
ugvw.pdf

2.2. Restful Objects viewer only

Most Apache Isis applications will consist of at least the Wicket viewer and optionally the
RestfulObjects viewer. When both viewers are deployed in the same app, then the bootstrapping is
performed by Wicket, and so the deployment type is configured as described in the previous
section.

In some cases though you may be using Apache Isis to provide a REST API only, that is, you won’t
have deployed the Wicket viewer. In these cases your app will be bootstrapped using Apache Isis'
IsisWebAppBootstrapper.

In this case the deployment type is specified through an Apache Isis-specific context parameter,
called isis.deploymentType:

* to specify SERVER (production) mode, use:

web.xml

<context-param>
<param-name>isis.deploymentType</param-name>
<param-value>server</param-value>
</context-param>

* to specify SERVER_PROTOTYPE (development) mode, use:

web.xml
<context-param>
<param-name>isis.deploymentType</param-name>

<param-value>server-prototype</param-value>
</context-param>

2.3. Overriding the deployment type

If bootstrapping the application using Apache Isis' org.apache.isis.WebServer then it is possible to
override the deployment type using the -t (or --type) flag.

For example:
java -jar ... org.apache.isis.WebServer -t SERVER

where "..." is the (usually rather long) list of JAR files and class directories that will make up your
application.

This works for both the Wicket viewer and the RestfulObjects viewer.

ugvw.pdf
ugvro.pdf
ugbtb.pdf#_ugbtb_web-xml_servlet-context-listeners
ugbtb.pdf#_ugbtb_web-xml_servlet-context-listeners
ugbtb.pdf#_ugbtb_deployment_cmd-line
ugvw.pdf
ugvro.pdf

Chapter 3. Configuration Files

When running an Apache Isis webapp, configuration properties are read from configuration files
held in the WEB-INF directory.

The WEBINF/isis.properties file is always read and must exist.

In addition, the following other properties are searched for and if present also read:

viewer_wicket.properties - if the Wicket viewer is in use

viewer_restfulobjects.properties - if the RestfulObjects viewer is in use

viewer.properties - for any other viewer configuration (but there are none currently)
persistor_datanucleus.properties - assuming the JDO/DataNucleus objectstore is in use
persistor.properties - for any other objectstore configuration.

This typically is used to hold JDBC URLs, which is arguably a slight violation of the file (because
there’s nothing in Apache Isis to say that persistors have to use JDBC. However, it is generally

convenient to put these JDBC settings into a single location. If you want, they could reside inin
any of persistor_datanucleus.properties, persistor.properties or (even) isis.properties

authentication_shiro.properties, authorization_shiro.properties

assuming the Shiro Security is in use (but there are no security-related config properties
currently; use shiro.ini for Shiro config)

authentication.properties, authorization.properties

for any other security-related config properties (but there are none currently).

You can if you wish simply store all properties in the isis.properties file; but we think that
breaking properties out into sections is preferable.

ugvw.pdf
ugvro.pdf

Chapter 4. Specifying components

Bootstrapping an Apache Isis application involves identifying both:
* the major components (authentication, persistence mechanisms, viewers) of Apache Isis, and
also
* specifying the domain services and persistent entities that make up the application itself.
As of 1.9.0 there are two different ways to perform this bootstrapping. The recommended (newer)
approach is to use an AppManifest, specified either programmatically or through the configuration
properties. This allows the components, services and entities to be specified from a single class.

The alternative (and older, pre 1.9.0) approach is to specify this information individually, through
configuration properties.

To specify the AppManifest as a configuration property, use:

Table 2. Core Configuration Properties (ignored if isis.appManifest is present)

Property Value Implements
(default value)
isis.appManifest FQCN 0.a.i.applib.AppManifest

By convention this implementation resides in an
myapp-app Maven module (as opposed to myapp-
dom or myapp-fixture). See the SimpleApp
archetype for details.

From this the framework can determine the domain services, persistent entities and security
(authentication and authorization) mechanisms to use. Other configuration (including fixtures) can
also be specified this way.

If the AppManifest approach is not being used, then the following configuration properties are used
to specify the major components of Apache Isis to use:

Table 3. Core Configuration Properties (ignored if isis.appManifest is present)

Property Value Implements
(default value)

isis.authentication shiro, bypass, 0.a.i.core.runtime.authentication.
FQCN AuthenticationManagerInstaller
(shiro) This property is IGNORED if the

isis.appManifest configuration property is
specified, or if an AppManifest is provided

programmatically.
isis.authorization shiro, bypass, o0.a.i.core.runtime.authorization.
FQCN AuthorizationManagerInstaller
(shiro) This property is IGNORED if the

isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

rgcms.pdf#_rgcms_classes_super_AppManifest
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
rgcms.pdf#_rgcms_classes_super_AppManifest
rgcms.pdf#_rgcms_classes_super_AppManifest

Property Value Implements
(default value)

isis.persistor datanucleus 0.3.i.core.runtime.installerregistry.installer
(datanucleus) api. PersistenceMechanismInstaller This
property is IGNORED completely in 1.9.0+; the
datanucleus implementation is always used.

isis.services-installer configuration, org.apache.isis.core.runtime.services.

configuration- SeryicesInstaller

and-annotation, The mechanism to discover and load domain

FQCN services: * configuration-and-annotation will

(configuration) search for @DomainService-annotated classes and
also read from isis.services configuration
property * configuration will only read from the
isis.services configuration property.
* Otherwise an alternative implementation of
the
0.3a.i.core.runtime.services.ServicesInstaller
internal API can be provided.
This property is IGNORED if the
isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

The values "shiro", "bypass” etc are actually aliases for concrete implementations

Q listed in Apache Isis' installer-registry.properties file (in isis-core-
runtime.jar). It is—at least in theory — possible to specify a fully qualified class
name to replace either of the two security components.

If the AppManifest is not being used then there are number of other configuration properties that
also must be specified: isis.services,
isis.services.ServicesInstallerFromAnnotation.packagePrefix and
isis.persistor.datanucleus.RegisterEntities.packagePrefix and isis.fixtures; these are listed in
the sections below.

4.1. Viewer Configuration

Viewers are specified by way of the filters and servlets in the web.xml file; these are not
bootstrapped by the framework, rather it is the other way around. However, we can also hint to the
framework as to which viewers are in use by way of a context parameter:

<context-param>
<param-name>isis.viewers</param-name>
<param-value>wicket,restfulobjects</param-value>
</context-param>

The net effect of this configuration is simply to ensure that the viewer_wicket.properties and/or the
viewer_restfulobjects.properties files are read.

rgcms.pdf#_rgcms_classes_super_AppManifest
ugbtb.pdf#_ugbtb_web-xml

Chapter 5. Configuring Core

This section lists the core/runtime configuration properties recognized by Apache Isis.

Configuration properties for the JDO/DataNucleus objectstore can be found in the

i

Configuring DataNucleus section later in this chapter, while configuration
properties for the viewers can be found in the their respective chapters, here for

Wicket viewer, and here for the Restful Objects viewer.

Table 4. Core Configuration Properties

Property

isis.objects.
editing

isis.persistor.
disableConcurrencyChecking

isis.reflector.facet.
actionAnnotation.
domainEvent.postForDefault

isis.reflector.facet.
collectionAnnotation.
domainEvent.postForDefault

isis.reflector.facet.
cssClass.patterns

isis.reflector.facet.
cssClassFa.patterns

isis.reflector.facet.
domainObjectAnnotation.
createdlLifecycleEvent.
postForDefault

Value
(default
value)

true,false
(true)

true,false
(false)

true,false
(true)

true,false
(true)

regex:cssl,
regex2:css2,...

regex:fa-
icon,regex2:fa-
icon2,...

true,false
(true)

Description

Whether objects' properties and collections can
be edited directly (for objects annotated with
@DomainObject#editing()); see below for further
discussion.

Disables concurrency checking globally.

Only intended for "emergency use" as a
workaround while pending fix/patch to Apache
Isis itself. (Note that there is no "datanucleus" in
the property).

Whether an event should be posted if
@Action#domainEvent() is not specified (is set to
ActionDomainEvent.Default).

Whether an event should be posted if
@Collection#domainEvent() is not specified (is set
to CollectionDomainEvent.Default).

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
delete.*) and the value is a Bootstrap CSS button
class (eg btn-warning) to be applied (as per
‘@CssClass()) to all action members matching
the regex.

See UI hints for more details.

Comma separated list of key:value pairs, where
the key is a regex matching action names (eg
create.*) and the value is a font-awesome icon
name (eg fa-plus) to be applied (as per
@CssClassFa()) to all action members matching
the regex.

See UI hints for more details.

Whether an event should be posted if
@DomainObject#createdLifecycleEvent() is not
specified (is set to ObjectCreatedEvent.Default).

ugvw.pdf#_ugvw_configuration-properties
ugvw.pdf#_ugvw_configuration-properties
ugvro.pdf#_ugvro_configuration-properties
rgant.pdf#_rgant-DomainObject_editing
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Collection_domainEvent
http://getbootstrap.com/css/
ugfun.pdf#_ugfun_how-tos_ui-hints_action-icons-and-css
http://fortawesome.github.io/Font-Awesome/icons/
ugfun.pdf#_ugfun_how-tos_ui-hints_action-icons-and-css
rgant.pdf#_rgant-DomainObject_createdLifecycleEvent

Property

isis.reflector.facet.
domainObjectAnnotation.
loadedLifecycleEvent.
postForDefault

isis.reflector.facet.
domainObjectAnnotation.
persistinglLifecycleEvent.
postForDefault

isis.reflector.facet.
domainObjectAnnotation.
persistedLifecycleEvent.
postForDefault

isis.reflector.facet.
domainObjectAnnotation.
removinglLifecycleEvent.
postForDefault

isis.reflector.facet.
domainObjectAnnotation.
updatinglLifecycleEvent.
postForDefault

isis.reflector.facet.
domainObjectAnnotation.
updatedLifecycleEvent.
postForDefault

isis.reflector.facet.
domainObjectLayoutAnnotation.
cssClassUiEvent.postForDefault

isis.reflector.facet.
domainObjectLayoutAnnotation.
iconUiEvent.postForDefault

isis.reflector.facet.
domainObjectLayoutAnnotation.
titleUiEvent.postForDefault

isis.reflector.facet.
filterVisibility

isis.reflector.facet.
propertyAnnotation.
domainEvent.postForDefault

Value
(default
value)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

true,false
(true)

Description

Whether an event should be posted if
@omainObject#loadedLifecycleEvent() is not
specified (is set to ObjectLoadedEvent.Default).

Whether an event should be posted if
@DomainObject#persistinglLifecycleEvent() is not
specified (is set to
ObjectPersistingEvent.Default).

Whether an event should be posted if
@omainObject#tpersistedLifecycleEvent() is not
specified (is set to ObjectPersistedEvent.Default).

Whether an event should be posted if
@DomainObject#removinglLifecycleEvent() is not
specified (is set to ObjectRemovingEvent.Default).

Whether an event should be posted if
@DomainObject#updatinglifecycleEvent() is not
specified (is set to ObjectUpdatingEvent.Default).

Whether an event should be posted if
@DomainObject#updatedLifecycleEvent() is not
specified (is set to ObjectUpdatedEvent.Default).

Whether an event should be posted if
@omainObjectLayout#icssClassUiEvent() is not
specified (is set to CssClassUiEvent.Default).

Whether an event should be posted if
@omainObjectLayout#iconUiEvent() is not
specified (is set to IconUiEvent.Default).

Whether an event should be posted if
@DomainObjectLayout#ititleUiEvent() is not
specified (is set to TitleUiEvent.Default).

Whether objects should be filtered for visibility.
See section below for further discussion.

Whether an event should be posted if
@Property#domainEvent() is not specified (is set to
PropertyDomainEvent.Default).

rgant.pdf#_rgant-DomainObject_loadedLifecycleEvent
rgant.pdf#_rgant-DomainObject_persistingLifecycleEvent
rgant.pdf#_rgant-DomainObject_persistedLifecycleEvent
rgant.pdf#_rgant-DomainObject_removingLifecycleEvent
rgant.pdf#_rgant-DomainObject_updatingLifecycleEvent
rgant.pdf#_rgant-DomainObject_updatedLifecycleEvent
rgant.pdf#_rgant-DomainObjectLayout_cssClassUiEvent
rgant.pdf#_rgant-DomainObjectLayout_iconUiEvent
rgant.pdf#_rgant-DomainObjectLayout_titleUiEvent
rgant.pdf#_rgant-Property_domainEvent

Property

isis.reflector.facets

isis.reflector.facets.
exclude

isis.reflector.facets.
include

isis.reflector.
layoutMetadataReaders

isis.reflector.validator

isis.reflector.validator.

allowDeprecated

isis.services

isis.services.
audit.objects

Value
(default
value)

FQCN

FQCN,FQCN2,...

FQCN,FQCN2,...

FQCN,FQCN2,...

FQCN

true,false
(true)

FQCN,FQCN2,...

all, none
(all)

Description

Fully qualified class names of a custom
implementation of ProgrammingModel interface.
See finetuning the programming model for more
details.

Fully qualified class names of (existing, built-in)
facet factory classes to be included to the
programming model.

See finetuning the programming model for more
details.

Fully qualified class names of (new, custom)
facet factory classes to be included to the
programming model.

See finetuning the programming model for more
details.

Fully qualified class names of classes to be
instantiated to read layout metadata, as used in
for dynamic layouts.

See Layout Metadata Reader for more
information.

Custom implementation of MetaModelValidator

(in the
org.apache.isis.core.metamodel.specloader.vali

dator package)
See Custom Validator to learn more.

Whether deprecated annotations or naming
conventions are tolerated or not. If not, then a
metamodel validation error will be triggered,
meaning the app won’t boot (fail-fast).

Fully qualified class names of classes to be
instantiated as domain services.

Each entry can be optionally prefixed by "n:"
specifying the relative order on the menu
(corresponds to
@DomainServicelayout#menuOrder()). This
property is IGNORED if the isis.appManifest
configuration property is specified, or if an
AppManifest is provided programmatically.

Whether the changed properties of objects
should be automatically audited (for objects
annotated with
@DomainObject(auditing=Auditing.AS_CONFIGURED).

ugbtb.pdf#_ugbtb_programming-model_finetuning
ugbtb.pdf#_ugbtb_programming-model_finetuning
ugbtb.pdf#_ugbtb_programming-model_finetuning
ugfun.pdf#_ugfun_object-layout_dynamic
ugbtb.pdf#_ugbtb_programming-model_layout-metadata-reader
ugbtb.pdf#_ugbtb_programming-model_custom-validator
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_super_AppManifest
rgant.pdf#_rgant-DomainObject_auditing

Property

isis.services.
command.actions

isis.services.
container.disableAutoFlush

isis.services.
container.disableAutoFlush

isis.services.
ContentNegotiation-
ServiceXRoDomainType
.prettyPrint

isis.service.
email.tls.enabled

isis.service.
email.sender.hostname

isis.service.
email.port

isis.service.
email.sender.address

10

Value
(default
value)

all, ignoreSafe,
none (all)

true,false
(false)

true,false
(false)

true,false
(depends)

true,false
(true)

host
(smtp.gmail.com

)

port number
(587)

email address

Description

Whether actions should be automatically reified

into commands (for actions annotated with
@Action(command=CommandReification.AS_CONFIGUR

ED).
ignoreQueryOnly is an alias for ignoreSafe.

Whether the DomainObjectContainer should
automatically flush pending changes prior to
querying (via allMatches(), firstMatch() and so
on).

Whether the DomainObjectContainer should
automatically flush pending changes prior to
querying (via allMatches(), firstMatch() and so
on).

If a domain object has been mapped to the
specified JAXB x-ro-domain-type, then
determines whether the result is pretty-printed
or not.

+ If no configuration property is available, then
the defaults is determined by the deployment
type: production mode disables pretty printing,
while prototype mode enables it.

Whether to enable TLS for the email SMTP
connection (used by EmailService).

NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

The hostname of the external SMTP provider
(used by EmailService).

NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

The port number for the SMTP service on the the
external SMTP host (used by EmailService).

NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

The email address to use for sending out email
(used by EmailService). Mandatory.

NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Action_command
rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EmailService

Property

isis.service.
email.sender.password

isis.services.
eventbus.implementation

isis.services.
eventbus.allowlLateRegistration

isis.services.
exceprecog.logRecognizedExcept
ions

isis.services.
ExceptionRecognizerComposite-
ForJdoObjectStore.disable

isis.services.
publish.objects

isis.services.
publish.actions

isis.services.
ServicesInstallerFromAnnotatio
n.

packagePrefix

Value
(default
value)

email
password

guava, axon,
FQCN (quava)

true,false
(false)

true,false
(false)

true,false
(false)

all, none
(all)

all, ignoreSafe,
none (all)

fully qualified
package names
(CSV)

Description

The corresponding password for the email
address to use for sending out email (used by
EmailService). Mandatory.

NB: note that the key is mis-spelt,
(isis.service.email rather than
isis.services.email)

which implementation to use by the
EventBusService as the underlying event bus.

whether a domain service can register with the
EventBusService after any events have posted.
Since this almost certainly constitutes a bug in
application code, by default this is disallowed.

whether recognized exceptions should also be
logged.

Generally a recognized exception is one that is
expected (for example a uniqueness constraint
violated in the database) and which does not
represent an error condition. This property logs
the exception anyway, useful for debugging.

whether to disable the default recognizers
registered by
ExceptionRecognizerCompositeForJdoObjectStore
This implementation provides a default set of
recognizers to convert RDBMS constraints into
user-friendly messages. In the (probably
remote) chance that this functionality isn’t
required, they can be disabled through this flag.

Whether changed objects should be
automatically published (for objects annotated
with
@omainObject(publishing=Publishing.AS_CONFIGU
RED).

Whether actions should be automatically
published (for actions annotated with
@Action(publishing=Publishing.AS_CONFIGURED).

to search for domain services (including all
subpackages). This property is IGNORED if the
isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

11

rgsvc.pdf#_rgsvc_api_EmailService
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EventBusService
rgant.pdf#_rgant-DomainObject_publishing
rgant.pdf#_rgant-DomainObject_publishing
rgant.pdf#_rgant-Action_publishing
rgcms.pdf#_rgcms_classes_super_AppManifest

Property Value Description

(default
value)
isis.services. read,write Whether to force the TranslationService into
translation.po.mode either read or write mode.
See 118n support to learn more about the
translation service.
isis.viewers. positive integer Default page size for parented collections (as
paged.parented (12) owned by an object, eg Customer#getOrders())
isis.viewers. positive integer Default page size for standalone collections (as
paged.standalone (25) returned from an action invocation)
isis.viewers. TOP, LEFT Default for label position for all properties if not
propertylLayout.labelPosition (LEFT) explicitly specified using

@PropertylLayout#labelPosition()

5.1. Filtering visibility

The framework provides the isis.reflector.facet.filterVisibility configuration property that
influences whether a returned object is visible to the end-user:

e Action invocations:

If an action returns a collection that includes the object, then the object will be excluded from the
list when rendered. If it returns a single object and the user does not have access to that object, then
the action will seemingly return null

e Collections:

If a parent object has a collection references another object to which the user does not have access,
then (as for actions) the object will not be rendered in the list

* Properties:

If an parent object has a (scalar) reference some other object to which the user does not have
access, then the reference will be rendered as empty.

* Choices and autoComplete lists:

If an object is returned in a list of choices or within an auto-complete list, and the user does not
have access, then it is excluded from the rendered list.

The original motivation for this feature was to transparently support such features as multi-
tenancy (as per the (non-ASF) Isis addons' security module). That is, if an entity is logically "owned"
by a user, then the multi-tenancy support can be arranged to prevent some other user from viewing
that object.

By default this configuration property is enabled. To disable the visibility filtering, set the
appropriate configuration property to false:

12

ugbtb.pdf#_ugbtb_i18n
rgant.pdf#_rgant-PropertyLayout_labelPosition
http://github.com/isisaddons/isis-module-security

isis.reflector.facet.filterVisibility=false

Filtering is supported by the Wicket viewer, and by the <code>WrapperFactory</code> domain
service (provided the wrapper’s execution mode is _not "skip rules"). However the
Restful Objects viewer does not currently support filtering.

In order for the framework to perform this filtering of collections, be aware that
the framework takes a copy of the original collection, filters on the collection, and
returns that filtered collection rather than the original.

o There are no major side-effects from this algorithm, other than the fact that the
referenced objects will (most likely) need to be resolved in order to determine if
they are visible. This could conceivably have a performance impact in some
cases.

5.2. objects.editing

This configuration property in effect allows editing to be disabled globally for an application:
isis.objects.editing=false

We recommend enabling this feature; it will help drive out the underlying business operations
(processes and procedures) that require objects to change; these can then be captured as business
actions.

5.3. propertylLayout.labelPosition

If you want a consistent look-n-feel throughout the app, eg all property labels to the top, then it’d be
rather frustrating to have to annotate every property.

Instead, a default can be specified in isis.properties:
isis.viewers.propertylLayout.labelPosition=TOP

or
isis.viewers.propertylLayout.labelPosition=LEFT

If these are not present then Apache Isis will render according to internal defaults. At the time of
writing, this means labels are to the left for all datatypes except multiline strings.

13

Chapter 6. Configuring DataNucleus

Apache Isis programmatically configures DataNucleus; any Apache Isis properties with the prefix
isis.persistor.datanucleus.impl are passed through directly to the JDO/DataNucleus objectstore
(with the prefix stripped off, of course).

DataNucleus will for itself also and read the META-INF/persistence.xml; at a minimum this defines
the name of the "persistence unit". n theory it could also hold mappings, though in Apache Isis we
tend to use annotations instead.

Furthermore, DataNucleus will search for various other XML mapping files, eg mappings.jdo. A full
list can be found here. The metadata in these XML can be used to override the annotations of
annotated entities; see Overriding JDO Annotatons for further discussion.

6.1. Configuration Properties

These configuration properties are typically stored in WEB-INF/persistor_datanucleus.properties.
However, you can place all configuration properties into WEB-INF/isis.properties if you wish (the
configuration properties from all config files are merged together).

6.1.1. Configuration Properties for Apache Isis itself

Table 5. [JDO/DataNucleus Objectstore Configuration Properties

Property Value Description
(default value)
isis.persistor. FQCN The default
datanucleus. (0.a.7.0s.jdo.dn.CreateSchemaObjectFromClasshMe
classMetadataloadedListener tadata) creates a DB schema object
isis.persistor.datanucleus. fully qualified that specifies the entities early rather than allow
RegisterEntities.packagePrefix package names DataNucleus to find the entities lazily. Further
(CSV) discussion below. This property is IGNORED if

the isis.appManifest configuration property is
specified, or if an AppManifest is provided
programmatically.

isis.persistor.datanucleus. zipped

PublishingService.serializedFo
rm

6.1.2. Configuration Properties passed through directly to DataNucleus.

Table 6. JDO/DataNucleus Objectstore Configuration Properties

Property Value Description
(default value)
{'515 .persistor.datanucleus. imp Passed through directly to Datanucleus (with

isis.persistor.datanucleus.impl prefix stripped)

14

http://www.datanucleus.org/products/datanucleus/jdo/metadata.html
ugbtb.pdf#_ugbtb_other-techniques_overriding-jdo-annotations
rgcms.pdf#_rgcms_classes_super_AppManifest

Property Value Description

(default value)
isis.persistor.datanucleus.imp false We recommend this setting is disabled.
L. Further discussion below.
datanucleus.persistenceByReach
abilityAtCommit

6.2. persistence.xml
0 TODO

6.3. Eagerly Registering Entities

Both Apache Isis and DataNucleus have their own metamodels of the domain entities. Apache Isis
builds its metamodel by walking the graph of types of the domain services. The JDO/DataNucleus
objectstore then takes these types and registers them with DataNucleus.

In some cases, though, not every entity type is discoverable from the API of the service actions. This
is especially the case if you have lots of subtypes (where the action method specifies only the
supertype). In such cases the Isis and JDO metamodels is built lazily, when an instance of that
(sub)type is first encountered.

Apache Isis is quite happy for the metamodel to be lazily created, and - to be fair - DataNucleus also
works well in most cases. In some cases, though, we have found that the JDBC driver (eg HSQLDB)
will deadlock if DataNucleus tries to submit some DDL (for a lazily discovered type) intermingled
with DML (for updating). In any case, it’s probably not good practice to have DataNucleus work this
way.

The framework thus provide mechanisms to search for all @PersistenceCapable entities under
specified package(s), and registers them all eagerly. In fact there are two:

* as of 1.9.0 the recommended (and simpler) approach is to specify an AppManifest, either as a
isis.appManifest configuration property or programmatically.

o for earlier versions the isis.persistor.datanucleus.RegisterEntities.packagePrefix
configuration property can be specified. To bootstrap as a webapp this is usually specified in
persistor_datanucleus.properties. (This is also supported in 1.9.0 if no AppManifest is specified.
For integration testing this can be specified programatically.

Further discussion on specifying the package(s) in integration testing (for either approach) can be
found in the user guide.

6.4. Persistence by Reachability

By default, J]DO/DataNucleus supports the concept of persistence-by-reachability. That is, if a non-
persistent entity is associated with an already-persistent entity, then DataNucleus will detect this
and will automatically persist the associated object. Put another way: there is no need to call
Apache Isis' DomainObjectContainer#ipersist(.) or DomainObjectContainer#persistIfNotAlready(.)

15

rgcms.pdf#_rgcms_classes_super_AppManifest
ugtst.pdf#_ugtst_integ-test-support_bootstrapping
http://www.datanucleus.org/products/datanucleus/jdo/orm/cascading.html

methods.

However, convenient though this feature is, you may find that it causes performance issues.

Q DataNucleus' persistence-by-reachability may cause performance issues. We
strongly recommend that you disable it.

One scenario in particular where this performance issues can arise is if your entities implement the
java.lang.Comparable interface, and you have used Apache Isis' ObjectContracts utility class. The
issue here is that ObjectContracts implementation can cause DataNucleus to recursively rehydrate a
larger number of associated entities. (More detail below).

We therefore recommend that you disable persistence-by-reachability by adding the following to
persistor_datanucleus.properties:

isis.persistor.datanucleus.impl.datanucleus.persistenceByReachabilityAtCommit=false

This change has been made to the SimpleApp archetype

If you do disable this feature, then you will (of course) need to ensure that you explicitly persist all
entities using the DomainObjectContainer#ipersist(.) or
DomainObjectContainer#persistIfNotAlready(.) methods.

6.4.1. The issue in more detail

Consider these entities (yuml.me/bh8681268):

referenc e startDate reference

Farty * AgreementRole |(Agreement
*

In the course of a transaction, the Agreement entity is loaded into memory (not necessarily
modified), and then new AgreementRoles are associated to it.

All these entities implement Comparable using ObjectContracts, and the implementation of

AgreementRole's (simplified) is:

public class AgreementRole {

public int compareTo(AgreementRole other) {
return ObjectContracts.compareTo(this, other, "agreement","startDate",
"party");
}
¥

while Agreement's is implemented as:

16

rgcms.pdf#_rgcms_classes_utility_ObjectContracts
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
http://yuml.me/edit/b8681268

public class Agreement {

public int compareTo(Agreement other) {
return ObjectContracts.compareTo(this, other, "reference");

}

and Party's is similarly implemented as:

public class Party {

public int compareTo(Party other) {
return ObjectContracts.compareTo(this, other, "reference");

}

DataNucleus’s persistence-by-reachability algorithm adds the AgreementRole instances into a
SortedSet, which causes AgreementRole#compareTo() to fire:

* the evaluation of the "agreement" property delegates back to the Agreement, whose own
Agreement#compareTo() uses the scalar reference property. As the Agreement is already in-memory,
this does not trigger any further database queries

* the evaluation of the "startDate" property is just a scalar property of the AgreementRole, so will
already in-memory

* the evaluation of the "party" property delegates back to the Party, whose own Party#compareTo()
requires the uses the scalar reference property. However, since the Party is not yet in-memory,
using the reference property triggers a database query to "rehydrate" the Party instance.

In other words, in figuring out whether AgreementRole requires the persistence-by-reachability
algorithm to run, it causes the adjacent associated entity Party to also be retrieved.

6.5. Using JNDI DataSource

Isis' JDO objectstore can be configured either to connect to the database using its own connection
pool, or by using a container-managed datasource.

6.5.1. Application managed

Using a connection pool managed directly by the application (that is, by Apache Isis' JDO objectstore
and ultimately by DataNucleus) requires a single set of configuration properties to be specified.

In the WEB-INF\persistor_datanucleus.properties file, specify the connection driver, url, username
and password.

For example:

17

isis.persistor.datanucleus.

DriverSpy

isis.persistor.datanucleus.

m:test

isis.persistor.datanucleus.
isis.persistor.datanucleus.

impl.javax.jdo.option.ConnectionDriverName=net.sf.log4jdbc.
impl.javax.jdo.option.ConnectionURL=jdbc:1log4jdbc:hsqldb:me

impl.javax.jdo.option.ConnectionUserName=sa
impl.javax.jdo.option.ConnectionPassword=

Those configuration properties that start with the prefix isis.persistor.datanucleus.impl. are
passed through directly to DataNucleus (with the prefix removed).

6.5.2. Container managed (JNDI)

Using a datasource managed by the servlet container requires three separate bits of configuration.

Firstly, specify the name of the datasource in the WEB-INF\persistor_datanucleus.properties file. For

example:

If connection pool settings are also present in this file, they will simply be ignored. Any other
configuration properties that start with the prefix isis.persistor.datanucleus.impl. are passed
through directly to DataNucleus (with the prefix removed).

Secondly, in the WEB-INF/web.xml, declare the resource reference:

<resource-ref>

<description>db</description>
<res-ref-name>jdbc/simpleapp</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Finally, declare the datasource as required by the servlet container. For example, if using Tomcat 7,
the datasource can be specified by adding the following to $TOMCAT_HOME/conf/context.xml:

<Resource name="jdbc/simpleapp"

auth="Container"

type="javax.sql.DataSource"

maxActive="100"
maxIdle="30"
maxWait="10000"
username="sa"
password="p4ssword"

driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
url="jdbc:sqlserver://127.0.0.1:1433;instance=.;databaseName=simpleapp"/>

You will also need to make sure that the JDBC driver is on the servlet container’s classpath. For
Tomcat, this means copying the driver to $TOMCAT_HOME/11b.

18

According to Tomcat’s documentation, it is supposedly possible to copy the
conf/context.xml to the name of the webapp, eg conf/mywebapp.xml, and scope the
connection to that webapp only. I was unable to get this working, however.

19

	Configuration Properties
	Table of Contents
	Chapter 1. Configuration Properties
	1.1. Other Guides

	Chapter 2. Deployment Types
	2.1. Using the Wicket Viewer
	2.2. Restful Objects viewer only
	2.3. Overriding the deployment type

	Chapter 3. Configuration Files
	Chapter 4. Specifying components
	4.1. Viewer Configuration

	Chapter 5. Configuring Core
	5.1. Filtering visibility
	5.2. objects.editing
	5.3. propertyLayout.labelPosition

	Chapter 6. Configuring DataNucleus
	6.1. Configuration Properties
	6.2. persistence.xml
	6.3. Eagerly Registering Entities
	6.4. Persistence by Reachability
	6.5. Using JNDI DataSource

