
Beyond the Basics

Table of Contents
1. Beyond the Basics . 1

1.1. Other Guides . 1

2. View Models . 2

2.1. Use Cases . 2

2.2. Programming Model . 5

2.3. JAXB-annotated DTOs . 7

3. Decoupling. 16

3.1. Database Schemas . 16

3.2. Mixins . 18

3.3. Contributions . 22

3.4. Vetoing Visibility . 22

3.5. Event Bus . 23

3.6. Pushing Changes . 23

4. i18n . 26

4.1. Implementation Approach. 26

4.2. TranslationService . 27

4.3. Imperative messages . 28

4.4. Wicket Viewer . 30

4.5. Integration Testing . 35

4.6. Escaped strings . 36

4.7. Configuration . 37

4.8. Supporting services . 38

5. Headless access . 40

5.1. AbstractIsisSessionTemplate . 40

5.2. BackgroundCommandExecution . 41

6. Other Techniques. 44

6.1. Overriding JDO Annotations . 44

6.2. Mapping RDBMS Views. 45

6.3. Transactions and Errors . 45

6.4. Multi-tenancy . 46

6.5. Persisted Title . 46

6.6. Replacing Service Implns . 48

7. Customizing the Prog Model . 51

7.1. Custom validator . 51

7.2. Finetuning . 53

7.3. Layout Metadata Reader . 54

8. Deployment . 57

8.1. Command Line (WebServer) . 57

8.2. Deploying to Tomcat . 58

8.3. Externalized Configuration . 59

8.4. Deploying to Google App Engine . 63

8.5. Neo4J . 64

8.6. JVM Flags . 66

9. web.xml . 67

9.1. Servlet Context Listeners . 69

9.2. Servlets . 71

9.3. Filters . 72

9.4. Configuration Files . 78

Chapter 1. Beyond the Basics
This guide provides more advanced guidance on writing maintainable larger applications.

Later chapters discuss how to deploy your app, and discuss other ways in which you can extend or
adapt the framework itself to your particular needs.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• Security

• Testing

• Beyond the Basics (this guide)

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)

1

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
rgant.pdf
rgsvc.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
dg.pdf
cgcom.pdf

Chapter 2. View Models
View models are a type of domain object (with state, behaviour etc) but where the state is not
persisted into the JDO/DataNucleus-managed database, but is instead converted to/from a string
memento, and held by the calling client. This opens up a number of more advanced use cases.

In this topic we’ll explore those use cases, and learn the programming model and conventions to
use view models in your application.

2.1. Use Cases
When developing an Apache Isis application you will most likely start off with the persistent
domain entities: Customer, Order, Product, and so on. For some applications this may well suffice.
However, if the application needs to integrate with other systems, or if the application needs to
support reasonably complex business processes, then you may need to look beyond just domain
entities. This section explores these use cases.

2.1.1. Externally-managed entities

Sometimes the entities that make up your application are persisted not in the local
JDO/DataNucleus database but reside in some other system, for example accessible only through a
SOAP web service. Logically that data might still be considered a domain entity and we might want
to associate behaviour with it, however it cannot be modelled as a domain entity if only because
JDO/DataNucleus doesn’t know about the entity nor how to retrieve or update it.

There are a couple of ways around this: we could either replicate the data somehow from the
external system into the Isis-managed database (in which case it is once again just another domain
entity), or we could set up a stub/proxy for the externally managed entity. This proxy would hold
the reference to the externally-managed domain entity (eg an external id), as well as the "smarts"
to know how to interact with that entity (by making SOAP web service calls etc).

The stub/proxy is a type of view model: a view - if you like - onto the domain entity managed by the
external system.



DataNucleus does in fact define its own Store Manager extension point, so an
alternative architecture would be to implement this interface such that
DataNucleus could make the calls to the external system; these externally-
persisted domain entities would therefore be modelled as regular
@PersistenceCapable entities after all. For entities not persisted externally the
implementation would delegate down to the default RDBMS-specific StoreManager
provided by DataNucleus itself.

An implementation that supported only reading from an external entity ought to
be comparatively straight-forward, but implementing one that also supported
updating external entities would need to carefully consider error conditions if the
external system is unavailable; distributed transactions are most likely
difficult/impossible to implement (and not desirable in any case).

2

http://www.datanucleus.org/documentation/extensions/store_manager.html

2.1.2. In-memory entities

As a variation on the above, sometimes there are domain objects that are, conceptually at least
entities, but whose state is not actually persisted anywhere, merely held in-memory (eg in a hash).

A simple example might be read-only configuration data that is read from a config file (eg log4j
appender definitions) but thereafter is presented in the UI just like any other entity.

2.1.3. Application-layer view models

Domain entities (whether locally persisted using JDO/DataNucleus or managed externally) are the
bread-and-butter of Apache Isis applications: the focus after all, should be on the business domain
concepts and ensuring that they are solid. Generally those domain entities will make sense to the
business domain experts: they form the ubiquitous language of the domain. These domain entities
are part of the domain layer.

That said, it may not always be practical to expect end-users of the application to interact solely
with those domain entities. For example, it may be useful to show a dashboard of the most
significant data in the system to a user, often pulling in and aggregating information from multiple
points of the app. Obtaining this information by hand (by querying the respective
services/repositories) would be tedious and slow; far better to have a dashboard do the job for the
end user.

A dashboard object is a model of the most relevant state to the end-user, in other words it is (quite
literally) a view model. It is not a persisted entity, instead it belongs to the application layer.

A view model need not merely aggregate data; it could also provide actions of its own. Most likely
these actions will be queries and will always ultimately just delegate down to the appropriate
domain-layer service/repository. But in some cases such view model actions might also modify
state of underlying domain entities.

Another common use for view models is to help co-ordinate complex business processes; for
example to perform a quarterly invoicing run, or to upload annual interest rates from an Excel
spreadsheet. In these cases the view model might have some state of its own, but in most cases that
state does not need to be persisted per se.

3

Desire Lines

One way to think of application view models is as modelling the "desire line": the commonly-
trod path that end-users must follow to get from point A to point B as quickly as possible.

To explain: there are documented examples that architects of university campus will only
add in paths some while after the campus buildings are complete: let the pedestrians figure
out the routes they want to take. The name we like best for this idea is "desire lines", though
it has also been called a "desire path", "paving the path" or "paving the sidewalk".

What that means is you should add view models after having built up the domain layer,
rather than before. These view models pave that commonly-trod path, automating the steps
that the end-user would otherwise have to do by hand.

It takes a little practice though, because even when building the domain layer "first", you
should still bear in mind what the use cases are that those domain entities are trying to
support. You certainly shouldn’t try to build out a domain layer that could support every
conceivable use case before starting to think about view models.

Instead, you should iterate. Identify the use case/story/end-user objective that you will
deliver value to the business. Then build out the minimum domain entities to support that
use case (refining the ubiquitous language as you go). Then, identify if there any view models
that could be introduced which would simplify the end-user interactions with the system
(perhaps automating several related use cases together).

2.1.4. DTOs

DTOs (data transfer objects) are simple classes that (according to wikipedia) "carry data between
processes".

If those two processes are parts of the same overall application (the same team builds and deploys
both server and client) then there’s generally no need to define a DTO; just access the entities using
Apache Isis' RestfulObjects viewer.

On the other hand, if the client consuming the DTO is a different application — by which we mean
developed/deployed by a different (possible third-party) team — then the DTOs act as a formal
contract between the provider and the consumer. In such cases, exposing domain entities over
RestfulObjects would be "A Bad Thing"™ because the consumer would in effect have access to
implementation details that could then not be easily changed by the producer.

To support this use case, a view model can be defined such that it can act as a DTO. This is done by
annotating the class using JAXB annotations; this allows the consumer to obtain the DTO in XML
format along with a corresponding XSD schema describing the structure of that XML. A discussion
of how that might be done using an ESB such as Apache Camel™ follows below.

In case it’s not obvious, these DTOs are still usable as "regular" view models; they will render in the
Wicket viewer just like any other. In fact (as the programming model section below makes clear),
these JAXB-annotated view models are in many regards the most powerful of all the alternative

4

http://ask.metafilter.com/62599/Where-the-sidewalk-ends
https://sivers.org/walkways
http://www.softpanorama.org/People/Wall/larry_wall_articles_and_interviews.shtml
ugfun.pdf#_ugfun_core-concepts_philosophy_domain-driven-design_ubiquitous-language
https://en.wikipedia.org/wiki/Data_transfer_object
ugvro.pdf
ugvro.pdf
http://camel.apache.org
ugvw.pdf

ways of writing view models.

It’s also worth noting that it is also possible to download the XML (or XSD) straight from the UI,
useful during development. The view model simply needs to implement the Dto marker interface;
the framework has mixins that contribute the download actions to the view model.

DTO Consumers

The actual consumers of DTOs will generally obtain the XML of the view models either by
requesting the XML directly, eg using the RestfulObjects viewer, or may have the XML sent to them
asynchronously using an ESB such as Apache Camel.

In the former case, the consumer requests the DTO by calling the REST API with the appropriate
HTTP Accept header. An appropriate implementation of ContentMappingService can then be used to
return the appropriate DTO (as XML).

For the latter case, one design is simply for the application to instantiate the view model, then call
the JaxbService to obtain its corresponding XML. This can then be published onto the ESB, for
example using an Apache ActiveMQ ™ queue.

However, rather than try to push all the data that might be needed by any of these external systems
in a single XML event (which would require anticipating all the requirements, likely a hopeless
task), a better design is to publish only the fact that something of note has changed - ie, that an
action on a domain object has been invoked - and then let the consumers call back to obtain other
information if required. This can once again be done by calling the REST API with an appropriate
HTTP Accept header.


This is an example of the VETRO pattern (validate, enrich, transform, route,
operate). In our case we focus on the validation (to determine the nature of the
inbound message, ie which action was invoked), and the enrich (callback to
obtain a DTO with additional information required by the consumer).

The (non-ASF) Isis addons' publishmq module provides an out-of-the-box solution of this design. It
provides an implementation of the PublishingService, but which simply publishes instances of
ActionInvocationMemento to an ActiveMQ queue. Camel (or similar) can then be hooked up to
consume these events from this queue, and use a processor to parse the action memento to
determine what has changed on the source system. Thereafter, a subsequent Camel processor can
then call back to the source - via the Restful Objects viewer - to enrich the message with additional
details using a DTO.

2.2. Programming Model
So much for the theory; how should view models be implemented? Fundamentally all view models'
state is serialized into a string memento; this memento is then held by the client (browser) in the
form of a URL. As you might imagine, this URL can become quite long, but Apache Isis offers a
mechanism (the UrlEncodingService) if it exceeds the maximum length for a URL (2083 characters).
Also, of course, this string memento must only contain characters that it is valid for use within a
URL.

5

rgcms.pdf#_rgcms_classes_mixins_Dto
rgcms.pdf#_rgcms_classes_mixins_Dto
ugvro.pdf
rgsvc.pdf#_rgsvc_spi_ContentMappingService
rgsvc.pdf#_rgsvc_api_JaxbService
http://activemq.apache.org
https://leanpub.com/camel-design-patterns
http://github.com/isisaddons/isis-module-publishmq
rgsvc.pdf#_rgsvc_spi_PublishingService
rgcms.pdf#_rgcms_schema-aim
rgsvc.pdf#_rgsvc_spi_UrlEncodingService

While the underlying technique is the same irrespective of use case, the programming model
provides various ways of defining a view model so that the original intent is not lost. They are:

Table 1. View model programming model

Use case Code Description

External
entity

[source,java] ----
@DomainObject(nature=Nature.EXTERNAL_ENTITY)
public class CustomerRecordOnSAP { … } ----

Annotated with
@DomainObject#nature() and
a nature of
EXTERNAL_ENTITY, with
memento derived
automatically from the
properties of the domain
object. Collections are
ignored, as are any
properties annotated as
not persisted.

In-memory
entity

[source,java] ----
@DomainObject(nature=Nature.INMEMORY_ENTITY)
public class Log4JAppender { … } ----

As preceding, but using a
nature of INMEMORY_ENTITY.

Application
view model

[source,java] ----
@DomainObject(nature=Nature.VIEW_MODEL) public
class Dashboard { … } ----

As preceding, but using a
nature of VIEW_MODEL.

Application
view model

[source,java] ---- @ViewModel public class Dashboard {
… } ----

Annotated with @ViewModel
annotation (effectively just
an alias)' memento is as
preceding: from "persisted"
properties, collections
ignored

Application
view model

[source,java] ---- public class ExcelUploadManager
implements ViewModel { public String
viewModelMemento() { … } public void
viewModelInit(String memento) { … } }

Implement ViewModel
interface. The memento is
as defined by the
interface’s methods: the
programmer has full
control (but also full
responsibility) for the
string memento.

6

rgant.pdf#_rgant-DomainObject_nature
rgant.pdf#_rgant-Property_notPersisted
rgant.pdf#_rgant-ViewModel
rgcms.pdf#_rgcms_classes_super_ViewModel

Use case Code Description

DTO [source,java] ---- @XmlRootElement("customer") public
class CustomerDto { … } ----

Annotate using JAXB <a
href="rgant.pdf#rgan
t-
XmlRootElement"><code>
@XmlRootElement</code>
 annotation. Memento
derived automatically by
serializing the XML graph
as implied by the JAXB
annotations. Note that
(unlike
<code>@ViewModel</code
> et al) this state _can
include collections.

JAXB-annotated DTOs are discussed in more detail immediately below.

2.3. JAXB-annotated DTOs
As noted in the introduction, view models can also be defined using JAXB annotations. The
serialized form of these view models is therefore XML, which also enables these view models to act
as DTOs.

In case it’s not obvious, these DTOs are still usable as "regular" view models; they will render in the
Wicket viewer just like any other. In fact, these JAXB-annotated view models are in many regards
the most powerful of all the various ways of writing view models:

• their entire state (collections as well as properties) is automatically managed from interaction to
interaction.

In contrast, using @ViewModel (or its @DomainObject#nature() equivalent) will only manage the
state of properties, but not collections. And if using the ViewModel interface, then the
programmer must write all the state management (lots of boilerplate).

• JAXB-annotated view models are editable.

The examples in this section uses the DTO for ToDoItem, taken from the (non-ASF) Isis addons'
todoapp. This DTO is defined as follows:

7

rg.pdf#_ugbtb_view-models_jaxb
ugvw.pdf
rgant.pdf#_rgant_ViewModel
rgant.pdf#_rgant_DomainObject_nature
rgcms.pdf#_rgcms_classes_super_ViewModel
http://github.com/isisaddons/isis-app-todoapp
http://github.com/isisaddons/isis-app-todoapp

package todoapp.app.viewmodels.todoitem.v1; ①
@XmlRootElement(name = "toDoItemDto") ②
@XmlType(
 propOrder = { ③
 "majorVersion", "minorVersion",
 "description", "category", ...
 "toDoItem", "similarItems"
 }
)
@DomainObjectLayout(
 titleUiEvent = TitleUiEvent.Doop.class ④
)
public class ToDoItemV1_1 implements Dto { ⑤
 @XmlElement(required = true, defaultValue = "1") ⑥
 public final String getMajorVersion() { return "1"; }
 @XmlElement(required = true, defaultValue = "1") ⑦
 public String getMinorVersion() { return "1"; }

 @XmlElement(required = true) ⑧
 @Getter @Setter
 protected String description;
 @XmlElement(required = true)
 @Getter @Setter
 protected String category;
 ...

 @Getter @Setter ⑨
 protected ToDoItem toDoItem;
 @XmlElementWrapper ⑩
 @XmlElement(name = "todoItem")
 @Getter @Setter
 protected List<ToDoItem> similarItems = Lists.newArrayList();
}

① package name encodes major version; see discussion on versioning

② identifies this class as a view model and defines the root element for JAXB serialization

③ all properties in the class must be listed; (they can be ignored using @XmlTransient)

④ demonstrating use of UI events for a subscriber to provide the DTO’s title; see
@DomainObjectLayout#titleUiEvent().

⑤ class name encodes (major and) minor version; see discussion on versioning

⑥ again, see discussion on versioning

⑦ again, see discussion on versioning

⑧ simple scalar properties

⑨ reference to a persistent entity; discussed below

⑩ reference to a collection of persistent entities; again discussed below

8

rgant.pdf#_rgant-DomainObjectLayout_titleUiEvent

2.3.1. Referencing Domain Entities

It’s quite common for view models to be "backed by" (be projections of) some underlying domain
entity. The ToDoItemDto we’ve been using as the example in this section is an example: there is an
underlying ToDoItem entity.

It wouldn’t make sense to serialize out the state of a persistent entity: the point of a DTO is to act as
a facade on top of the entity so that the implementation details (of the entity’s structure) don’t leak
out to the consumer. However, the identity of the underlying entity can be well defined; Apache Isis
defines the Common schema which defines the <oid-dto> element (and corresponding OidDto class):
the object’s type and its identifier. This is basically a formal XML equivalent to the Bookmark object
obtained from the BookmarkService.

There is only one requirement to make this work: every referenced domain entity must be
annotated with @XmlJavaTypeAdapter, specifying the framework-provided
PersistentEntityAdapter.class. This class is similar to the BookmarkService: it knows how to create
an OidDto from an object reference.

Thus, in our view model we can legitimately write:

package todoapp.app.viewmodels.todoitem.v1;
...
public class ToDoItemV1_1 implements Dto {
 ...
 @Getter @Setter
 protected ToDoItem toDoItem;
}

All we need to do is remember to add that @XmlJavaTypeAdapter annotation to the referenced entity:

@XmlJavaTypeAdapter(PersistentEntityAdapter.class)
public class ToDoItem ... {
 ...
}

It’s also possible for a DTO to hold collections of objects. These can be of any type, either simple
properties, or references to other objects. The only bit of boilerplate that is required is the
@XmlElementWrapper annotation. This instructs JAXB to create an XML element (based on the field
name) to contain each of the elements. (If this is omitted then the contents of the collection are at
the same level as the properties; almost certainly not what is required).

For example, the DTO also contains:

9

rgcms.pdf#_rgcms_schema-common
rgsvc.pdf#_rgsvc_api_BookmarkService
rgant.pdf#_rgant-XmlJavaTypeAdapter

package todoapp.app.viewmodels.todoitem.v1;
...
public class ToDoItemV1_1 implements Dto {
 ...
 @XmlElementWrapper
 @XmlElement(name = "todoItem")
 @Getter @Setter
 protected List<ToDoItem> similarItems = Lists.newArrayList();
}

There’s nothing to prevent a JAXB DTO from containing rich graphs of data, parent containing
children containing children. Be aware though that all of this state will become the DTO’s
memento, ultimately converted into a URL-safe form, by way of the UrlEncodingService.

There are limits to the lengths of URLs, however. Therefore the DTO should not include state that
can easily be derived from other information. If the URL does exceed limits, then provide a custom
implementation of UrlEncodingService to handle the memento string in some other fashion (eg
substituting it with a GUID, with the memento cached somehow on the server).

2.3.2. Versioning

The whole point of using DTOs (in Apache Isis, at least) is to define a formal contact between two
inter-operating but independent applications. Since the only thing we can predicate about the
future with any certainty is that it one or both of these applications will change, we should version
DTOs from the get-go. This allows us to make changes going forward without unnecessarily
breaking existing consumers of the data.


There are several ways that versioning might be accomplished; we base our
guidelines on this article taken from Roger Costello’s blog, well worth a read.

We can distinguish two types of changes:

• backwardly compatible changes

• breaking changes.

We can immediately say that the XSD namespace should change only when there is a
major/breaking change, if following semantic versioning that means when we bump the major
version number v1, v2, etc.

XML namespaces correspond (when using JAXB) to Java packages. We should therefore place our
DTOs in a package that contains only the major number; this package will eventually contain a
range of DTOs that are intended to be backwardly compatible with one another. The package
should also have a package-info.java; it is this that declares the XSD namespace:

10

rgsvc.pdf#_rgsvc_spi_UrlEncodingService
rgsvc.pdf#_rgsvc_spi_UrlEncodingService
http://www.xfront.com/Versioning.pdf
http://semver.org

@javax.xml.bind.annotation.XmlSchema(
 namespace = "http://viewmodels.app.todoapp/todoitem/v1/Dto.xsd", ①
 xmlns = {
 @javax.xml.bind.annotation.XmlNs(
 namespaceURI = "http://isis.apache.org/schema/common",
 prefix = "common"
)
 },
 elementFormDefault = javax.xml.bind.annotation.XmlNsForm.QUALIFIED
)
package todoapp.app.viewmodels.todoitem.v1; ②

① the namespace URI, used by the DTO residing in this package.

② the package in which the DTO resides. Note that this contains only the major version.

Although there is no requirement for the namespace URI to correspond to a physical URL, it should
be unique. This usually means including a company domain name within the string.

As noted above, this package will contain multiple DTO classes all with the same namespace; these
represent a set of minor versions of the DTO, each subsequent one intended to be backwardly
compatible with the previous. Since these DTO classes will all be in the same package (as per the
advice above), the class should therefore include the minor version name:

package todoapp.app.viewmodels.todoitem.v1; ①
...
public class ToDoItemV1_1 implements Dto { ②
 ...
}

① package contains the major version only

② DTO class contains the (major and) minor version

We also recommend that each DTO instance should also specify the version of the XSD schema that
it is logically compatible with. Probably most consumers will not persist the DTOs; they will be
processed and then discarded. However, it would be wrong to assume that is the case in all cases;
some consumers might choose to persist the DTO (eg for replay at some later state).

Thus:

public class ToDoItemV1_1 implements Dto {
 @XmlElement(required = true, defaultValue = "1")
 public final String getMajorVersion() { return "1"; } ①
 @XmlElement(required = true, defaultValue = "1")
 public String getMinorVersion() { return "1"; } ②
 ...
}

11

① returns the major version (in sync with the package)

② returns the minor version (in sync with the class name)

These methods always return a hard-coded literal. Any instances serialized from these classes will
implicitly "declare" the (major and) minor version of the schema that they are compatible with. If
a consumer has a minimum version that it requires, it can therefore inspect the XML instance itself
to determine if it is able to consume said XML.

If a new (minor) version of a DTO is required, then we recommend copying-and-pasting the
previous version, eg:

public class ToDoItemV1_2 implements Dto {
 @XmlElement(required = true, defaultValue = "1")
 public final String getMajorVersion() { return "1"; }
 @XmlElement(required = true, defaultValue = "2")
 public String getMinorVersion() { return "2"; }
 ...
}

Obviously, only changes made must be backward compatible, eg new members must be optional.

Alternatively, you might also consider simply editing the source file, ie renaming the class and
bumping up the value returned by getMinorVersion().

We also don’t recommend using inheritance (ie ToDoItemV1_2 should not inherit from ToDoItemV1_1;
this creates unnecessary complexity downstream if generating XSDs and DTOs for the downstream
consumer.

2.3.3. Generating XSDs and DTOs

In the section above it was explained how a view model DTO can transparent reference any
"backing" entities; these references are converted to internal object identifiers.

However, if the consumer of the XML is another Java process (eg running within an Apache Camel
route), then you might be tempted/expect to be able to use the same DTO within that Java process.
After a little thought though you’ll realize that (duh!) of course you cannot; the consumer runs in a
different process space, and will not have references to those containing entities.

There are therefore two options:

• either choose not to have the view model DTO reference any persistent entities, and simply limit
the DTO to simple scalars.

Such a DTO will then be usable in both the Apache Isis app (to generate the original XML) and in
the consumer. The BookmarkService can be used to obtain the object identifiers

• alternatively, generate a different DTO for the consumer from the XSD of the view model DTO.

The (non-ASF) Isis addons' todoapp uses the second approach; generating the XSD and consumer’s

12

rgsvc.pdf#_rgsvc_api_BookmarkService
http://github.com/isisaddons/isis-app-todoapp

DTO is mostly just boilerplate pom.xml file. In the todoapp this can be found in the todoapp-xsd
Maven module, whose pom.xml is structured as two profiles:

<project ... >
 <artifactId>todoapp-xsd</artifactId>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>todoapp-app</artifactId>
 </dependency>
 </dependencies>
 <profiles>
 <profile>
 <id>isis-xsd</id>
 <activation>
 <property>
 <name>!skip.isis-xsd</name>
 </property>
 </activation>
 ...
 </profile>
 <profile>
 <id>xjc</id>
 <activation>
 <property>
 <name>!skip.xjc</name>
 </property>
 </activation>
 ...
 </profile>
 </profiles>
</project>

The isis-xsd profile generates the XSD using the xsd goal of Isis' maven plugin:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.isis.tool</groupId>
 <artifactId>isis-maven-plugin</artifactId>
 <version>${isis.version}</version>
 <configuration>
 <appManifest>todoapp.dom.ToDoAppDomManifest</appManifest>
 <jaxbClasses>
 <jaxbClass>
todoapp.app.viewmodels.todoitem.v1.ToDoItemV1_1</jaxbClass>
 </jaxbClasses>
 <separate>false</separate>
 <commonSchemas>false</commonSchemas>

13

rgmvn.pdf#_rgmvn_xsd
rgmvn.pdf#_rgmvn_xsd

 </configuration>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>todoapp-dom</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>16.0.1</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>xsd</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.5.3</version>
 <configuration>
 <descriptor>src/assembly/dep.xml</descriptor>
 </configuration>
 <executions>
 <execution>
 <id>create-archive</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

The todoapp.dom.ToDoAppDomManifest is a cut-down version of the app manifest that identifies only
the dom domain services.

The xjc profile, meanwhile, uses the maven-jaxb2-plugin (a wrapper around the schemagen JDK tool)
to generate a DTO from the XSD generated by the preceding profile:

<build>
 <plugins>
 <plugin>

14

 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <version>0.12.3</version>
 <executions>
 <execution>
 <id>xjc-generate</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <removeOldOutput>true</removeOldOutput>
 <schemaDirectory>
 target/generated-resources/isis-xsd/viewmodels.app.todoapp
 </schemaDirectory>
 <schemaIncludes>
 <schemaInclude>todoitem/v1/Dto.xsd</schemaInclude>
 </schemaIncludes>
 <bindingDirectory>src/main/resources</bindingDirectory>
 <bindingIncludes>
 <bindingInclude>binding.xml</bindingInclude>
 </bindingIncludes>
 <catalog>src/main/resources/catalog.xml</catalog>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.9.1</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>target/generated-sources/xjc</source>
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

15

Chapter 3. Decoupling
We use Java packages as a way to group related domain objects together; the package name forms a
namespace. We can then reason about all the classes in that package/namespace as a single unit, or
module.

This section describes how to use Apache Isis' features to ensure that your domain application
remains decoupled. The techniques described here are also the ones that have been adopted by the
various Isis Addons modules (not ASF) for security, commands, auditing etc.

The following sections describe how to re-assemble an application, in particular where some
modules are in-house but others are potentially third-party (eg the Isis Addons modules).


There is some overlap with OSGi and Java 9’s Jigsaw concepts of "module"; in the
future we expect to refactor Apache Isis to leverage these module systems.

3.1. Database Schemas
In the same way that Java packages act as a namespace for domain objects, it’s good practice to map
domain entities to their own (database) schemas. As of 1.9.0, all the Isis Addons (non-ASF) modules
do this, for example:

@javax.jdo.annotations.PersistenceCapable(...
 schema = "isissecurity",
 table = "ApplicationUser")
public class ApplicationUser ... { ... }

results in a CREATE TABLE statement of:

CREATE TABLE isissecurity."ApplicationUser" (
 ...
)

while:

@javax.jdo.annotations.PersistenceCapable(...
 schema = "isisaudit",
 table="AuditEntry")
public class AuditEntry ... { ... }

similarly results in:

16

http://github.com/isisaddons
http://www.isisaddons.org

CREATE TABLE isisaudit."AuditEntry" (
 ...
)


If for some reason you don’t want to use schemas (though we strongly
recommend that you do), then note that you can override the @PersistenceCapable
annotation by providing XML metadata (the mappings.jdo file); see the section on
configuring DataNucleus Overriding Annotations for more details.

3.1.1. Listener to create schema

JDO/DataNucleus does not automatically create these schema objects, but it does provide a listener
callback API on the initialization of each class into the JDO metamodel.


Actually, the above statement isn’t quite true. In DN 3.2.x (as used by Apache Isis
up to v1.8.0) there was no support for schemas. As of Apache Isis 1.9.0 and DN 4.0
there is now support. But we implemented this feature initially against DN 3.2.x,
and it still works, so for now we’ve decided to leave it in.

Therefore Apache Isis attaches a listener, CreateSchemaObjectFromClassMetadata, that checks for the
schema’s existence, and creates the schema if required.

The guts of its implementation is:

public class CreateSchemaObjectFromClassMetadata
 implements MetaDataListener,
 DataNucleusPropertiesAware {
 @Override
 public void loaded(final AbstractClassMetaData cmd) { ... }

 protected String buildSqlToCheck(final AbstractClassMetaData cmd) {
 final String schemaName = schemaNameFor(cmd);
 return String.format(
 "SELECT count(*) FROM INFORMATION_SCHEMA.SCHEMATA where SCHEMA_NAME =
'%s'", schemaName);
 }
 protected String buildSqlToExec(final AbstractClassMetaData cmd) {
 final String schemaName = schemaNameFor(cmd);
 return String.format("CREATE SCHEMA \"%s\"", schemaName);
 }
}

where MetaDataListener is the DataNucleus listener API:

17

rgcfg.pdf#_rgcfg_configuring-datanucleus

public interface MetaDataListener {
 void loaded(AbstractClassMetaData cmd);
}

Although not formal API, the default CreateSchemaObjectFromClassMetadata has been designed to be
easily overrideable if you need to tweak it to support other RDBMS'. Any implementation must
implement org.datanucleus.metadata.MetaDataListener:

The implementation provided has has been tested for HSQLDB, PostgreSQL and MS SQL Server, and
is used automatically unless an alternative implementation is specified (as described in the section
below).

3.1.2. Alternative implementation

An alternative implementation can be registered and used through the following configuration
property:

isis.persistor.datanucleus.classMetadataLoadedListener=\

org.apache.isis.objectstore.jdo.datanucleus.CreateSchemaObjectFromClassMetadata

Because this pertains to the JDO Objectstore we suggest you put this configuration property in WEB-
INF/persistor_datanucleus.properties; but putting it in isis.properties will also work.

Any implementation must implement org.datanucleus.metadata.MetaDataListener. In many cases
simply subclassing from CreateSchemaObjectFromClassMetadata and overriding buildSqlToCheck(…)

and buildSqlToExec(…) should suffice.

If you do need more control, your implementation can also optionally implement
org.apache.isis.objectstore.jdo.datanucleus.DataNucleusPropertiesAware:

public interface DataNucleusPropertiesAware {
 public void setDataNucleusProperties(final Map<String, String> properties);
}

This provides access to the properties passed through to JDO/DataNucleus.


If you do extend Apache Isis' CreateSchemaObjectFromClassMetadata class for some
other database, please contribute back your improvements.

3.2. Mixins
A mixin object allows one class to contribute behaviour - actions, (derived) properties and (derived)
collections - to another domain object, either a domain entity or view model.

Some programming languages use the term "trait" instead of mixin, and some languages (such as

18

https://issues.apache.org/jira/browse/ISIS

AspectJ) define their own syntax for defining such constructs. In Apache Isis a mixin is very similar
to a domain service, however it also defines a single 1-arg constructor that defines the type of the
domain objects that it contributes to.

Why do this? The main reason is to allow the app to be decoupled, so that it doesn’t degrade into
the proverbial "big ball of mud". Mixins (and contributions) allow dependency to be inverted, so
that the dependencies between modules can be kept acyclic and under control.

3.2.1. Example

This is probably best explained by way of an example. Suppose we have the Customer domain object
which implements a DocumentHolder interface:

public class Customer implements DocumentHolder {
 ...
}

We could then imagine a mixin that would contribute behaviour to list, add and remove the
Documents for this holder:

@Mixin ①
public class DocumentHolder_documents {
 private final DocumentHolder holder;
 public DocumentHolder_documents(DocumentHolder holder) { ②
 this.holder = holder;
 }
 @Action(semantics=SemanticsOf.SAFE)
 @ActionLayout(contributed = Contributed.AS_ASSOCIATION)
 @CollectionLayout(render = RenderType.EAGERLY)
 public List<Document> documents() {
 ... ③
 }
 @Action(semantics=SemanticsOf.IDEMPOTENT)
 public DocumentHolder add(Document document) {
 ... ④
 }
 @Action(semantics=SemanticsOf.IDEMPOTENT)
 public DocumentHolder remove(Document document) {
 ... ⑤
 }
}

① alternatively can use @DomainObject(nature=Nature.MIXIN)

② constructor indicates the type that is contributed to

③ implementation could, for example, use the (non-ASF) Isis addons' poly module.

④ implementation would probably delegate to an injected repository to (ultimately) insert data
into some table

19

http://www.laputan.org/mud/mud.html#BigBallOfMud
http://github.com/isisaddons/isis-module-poly

⑤ implementation would probably delegate to an injected repository to (ultimately) delete data
from some table

The above example also omits any supporting methods, eg hideXxx(), disableXxx(), validateXxx(),
etc.

In the user interface the "documents" collection, the "add" and the "delete" actions will appear to be
part of Customer. In essence the framework constructs a composite UI from the parts of multiple
objects.


The (non-ASF) Incode note and Incode commchannel modules are real-world
examples that use this technique throughout.

3.2.2. Contributing a single member

The mixin can contribute as much or as little behaviour as makes sense. For example, in the
example above it might be that Documents are created through some other mechanism (eg scanned)
and are never deleted. In that case, the mixin might be simply:

@Mixin
public class DocumentHolder_documents {
 ..
 public List<Document> documents() { ... }
 ...
}

For the case where there is only a single member being contributed, the special name "__" (that is,
two underscores) can be used instead. In this case, the contributee member’s name will be inferred
from the mixin’s class name. If the class name itself contains an underscore, then the last part of
the class name will be used.

Thus, for a mixin whose class name is DocumentHolder_documents, the effective member name is
documents. We could therefore rewrite the mixin as:

@Mixin
public class DocumentHolder_documents {
 ..
 public List<Document> __() { ... }
 ...
}

The benefit of this is marginal unless there are supporting methods, in which case the removal of
boilerplate is welcome:

20

http://github.com/incodehq/incode-module-note
http://github.com/incodehq/incode-module-commchannel

@Mixin
public class DocumentHolder_documents {
 ..
 public List<Document> __() { ... }
 public boolean hide__() { ... }
 public String disable__() { ... }
 ...
}

3.2.3. Programmatic usage

When a domain object is rendered, the framework will automatically instantiate all required
mixins and delegate to them dynamically. If writing integration tests or fixtures, or (sometimes)
just regular domain logic, then you may need to instantiate mixins directly.

For this you can use the xref:rgsvc.adoc#_rgsvc_api_DomainObjectContainer_object-creation-
api[DomainObjectContainer#mixin(…) method. For example:

DocumentHolder_documents mixin = container.mixin(DocumentHolder_documents.class,
customer);

The IntegrationTestAbstract and FixtureScript classes both provide a mixin(…) convenience
method.

3.2.4. Other reasons to use mixins

In the introduction to this topic we mentioned that mixins are most useful for ensuring that the
domain app remains decoupled. This applies to the case where the contributee (eg Customer, being
mixed into) is in one module, while the contributor mixin (DocumentHolder_documents) is in some
other module. The customer module knows about the document module, but not vice versa.

However, you might also want to consider moving behaviour out of entities even within the same
module, perhaps even within the same Java package. And the reason for this is to support hot-
reloading of Java classes, so that you can modify and recompile your application without having to
restart it. This can provide substantial productivity gains.

The Hotspot JVM has limited support for hot reloading; generally you can change method
implementations but you cannot introduce new methods. However, the DCEVM open source
project will patch the JVM to support much more complete hot reloading support. There are also, of
course, commercial products such as JRebel.

The main snag in all this is the DataNucleus enhancer… any change to entities is going to require
the entity to be re-enhanced, and the JDO metamodel recreated, which usually "stuffs things up". So
hot-reloading of an app whose fundamental structure is changing is likely to remain a no-no.

However, chances are that the structure of your domain objects (the data) will change much less
rapidly than the behaviour of those domain objects. Thus, it’s the behaviour that you’re most likely

21

ugtst.pdf#_ugtst_integ-test-support_bootstrapping_IntegrationTestAbstract
rgcms.pdf#_rgcms_classes_super_FixtureScript
https://dcevm.github.io/

wanting to change while the app is still running. If you move that behaviour out into mixins (or
contributed services), then these can be reloaded happily. (When running in prototype mode),
Apache Isis will automatically recreate the portion of the metamodel for any domain object as it is
rendered.

3.2.5. Related reading

Mixins are an implementation of the DCI architecture architecture, as formulated and described by
Trygve Reenskaug and Jim Coplien. Reenskaug was the inventor of the MVC pattern (and also the
external examiner for Richard Pawson’s PhD thesis), while Coplien has a long history in object-
orientation, C++ and patterns.

DCI stands for Data-Context-Interaction and is presented as an evolution of object-oriented
programming, but one where behaviour is bound to objects dynamically rather than statically in
some context or other. The @Mixin pattern is Apache Isis' straightforward take on the same basic
concept.

You might also wish to check out Apache Zest (formerly Qi4J), which implements a much more
general purpose implementation of the same concepts.

3.3. Contributions
Contributed services provide many of the same benefits as mixins; indeed mixins are an evolution
and refinement of the contributions concept.

The main difference between contributed services and mixins is that the actions of a contributed
service will contribute to all the parameters of its actions, whereas a mixin only contributes to the
type accepted in its constructor. Also, contributed services are long-lived singletons, whereas
mixins are instantiated as required (by the framework) and then discarded almost immediately.

For more on contributed services:

• the syntax of writing contributed actions/properties/collections is described in this how-to

• there’s also useful information in the reference guide, discussing the @DomainService#nature()
attribute, for the NatureOfService.VIEW_CONTRIBUTIONS_ONLY nature.

3.4. Vetoing Visibility


TODO - a write-up of the "vetoing subscriber" design pattern, eg as described in
the BookmarkService

eg if included an addon such as auditing or security.

solution is to write a domain event subscriber that vetoes the visibility

All the addons actions inherit from common base classes so this can be as broad-brush or fine-
grained as required

22

http://www.artima.com/articles/dci_vision.html
https://en.wikipedia.org/wiki/Trygve_Reenskaug
https://en.wikipedia.org/wiki/Jim_Coplien
http://zest.apache.org
ugfun.pdf#_ugfun_how-tos_contributed-members
rgant.pdf#_rgant-DomainService_nature
rgsvc.pdf#_rgsvc_api_BookmarkService

3.5. Event Bus


TODO - see EventBusService, @Action#domainEvent(), @Property#domainEvent(),
@Collection#domainEvent(), WrapperFactory.

3.6. Pushing Changes


This technique is much less powerful than using the event bus . We present it
mostly for completeness.

3.6.1. When a property is changed

If you want to invoke functionality whenever a property is changed by the user, then you should
create a supporting modifyXxx() method and include the functionality within that. The syntax is:

public void modifyPropertyName(PropertyType param) { ... }

Why not just put this functionality in the setter? Well, the setter is used by the object store to
recreate the state of an already persisted object. Putting additional behaviour in the setter would
cause it to be triggered incorrectly.

For example:

public class Order() {
 public Integer getAmount() { ... }
 public void setAmount(Integer amount) { ... }
 public void modifyAmount(Integer amount) { ①
 setAmount(amount); ③
 addToTotal(amount); ②
 }
 ...
}

① The modifyAmount() method calls …

② … the addToTotal() (not shown) to maintain some running total.

We don’t want this addToCall() method to be called when pulling the object back from the object
store, so we put it into the modify, not the setter.

You may optionally also specify a clearXxx() which works the same way as modify modify Xxx() but
is called when the property is cleared by the user (i.e. the current value replaced by nothing). The
syntax is:

public void clearPropertyName() { ... }

23

rgsvc.pdf#_rgsvc_api_EventBusService
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Property_domainEvent
rgant.pdf#_rgant-Collection_domainEvent
rgsvc.pdf#_rgsvc_api_WrapperFactory

To extend the above example:

public class Order() {
 public Integer getAmount() { ... }
 public void setAmount(Integer amount) { ... }
 public void modifyAmount(Integer amount) { ... }
 public void clearAmount() {
 removeFromTotal(this.amount);
 setAmount(null);
 }
 ...
}

3.6.2. When a collection is modified

A collection may have a corresponding addToXxx() and/or removeFromXxx() method. If present, and
direct manipulation of the contents of the connection has not been disabled (see ?), then they will
be called (instead of adding/removing an object directly to the collection returned by the accessor).

The reason for this behaviour is to allow other behaviour to be triggered when the contents of the
collection is altered. That is, it is directly equivalent to the supporting modifyXxx() and clearXxx()
methods for properties (see ?).

The syntax is:

public void addTo<CollectionName>(EntityType param) { ... }

and

public void removeFromCollectionName(EntityType param) { ... }

where EntityType is the same type as the generic collection type.

For example:

24

public class Employee { ... }

public class Department {

 private int numMaleEmployees; ①
 private int numFemaleEmployees; ②

 private Set<Employee> employees = new TreeSet<Employee>();
 public Set<Employee> getEmployees() {
 return employees;
 }
 private void setEmployees(Set<Employee> employees) {
 this.employees = employees;
 }
 public void addToEmployees(Employee employee) { ③
 numMaleEmployees += countOneMale(employee);
 numFemaleEmployees += countOneFemale(employee);
 employees.add(employee);
 }
 public void removeFromEmployees(Employee employee) { ④
 numMaleEmployees -= countOneMale(employee);
 numFemaleEmployees -= countOneFemale(employee);
 employees.remove(employee);
 }
 private int countOneMale(Employee employee) { return employee.isMale()?1:0; }
 private int countOneFemale(Employee employee) { return employee.isFemale()?1:0; }

 ...
}

① maintain a count of the number of male …

② … and female employees (getters and setters omitted)

③ the addTo…() method increments the derived properties

④ the removeFrom…() method similarly decrements the derived properties

25

rgcms.pdf#_rgcms_methods_prefixes_addTo
rgcms.pdf#_rgcms_methods_prefixes_addTo
rgcms.pdf#_rgcms_methods_prefixes_addTo
rgcms.pdf#_rgcms_methods_prefixes_removeFrom
rgcms.pdf#_rgcms_methods_prefixes_removeFrom
rgcms.pdf#_rgcms_methods_prefixes_removeFrom

Chapter 4. i18n
Apache Isis' support for internationlization (i18n) allows every element of the domain model (the
class names, property names, action names, parameter names and so forth) to be translated.

It also supports translations of messages raised imperatively, by which we mean as the result of a
call to title() to obtain an object’s title, or messages resulting from any business rule violations (eg
disable…() or validate…(), and so on.

The Wicket viewer (that is, its labels and messages) is also internationalized using the same
mechanism. If no translations are available, then the Wicket viewer falls back to using Wicket
resource bundles.

Isis does not translate the values of your domain objects, though. So, if you have a domain concept
such as Country whose name is intended to be localized according to the current user, you will need
to model this yourself.

4.1. Implementation Approach
Most Java frameworks tackle i18n by using Java’s own ResourceBundle API. However, there are
some serious drawbacks in this approach, including:

• if a string appears more than once (eg "name" or "description") then it must be translated
everywhere it appears in every resource bundle file

• there is no support for plural forms (see this SO answer)

• there is no tooling support for translators

Apache Isis therefore takes a different approach, drawing inspiration from GNU’s gettext API and
specifically its .pot and .po files. These are intended to be used as follows:

• the .pot (portable object template) file holds the message text to be translated

• this file is translated into multiple .po (portable object) files, one per supported locale

• these .po files are renamed according to their locale, and placed into the 'appropriate' location
to be picked up by the runtime. The name of each .po resolved in a very similar way to resource
bundles.

The format of the .pot and .po files is identical; the only difference is that the .po file has
translations for each of the message strings. These message strings can also have singular and
plural forms.


Although Apache Isis' implementation is modelled after GNU’s API, it does not use
any GNU software. This is for two reasons: (a) to simplify the toolchain/developer
experience, and (b) because GNU software is usually GPL, which would be
incompatible with the Apache license.

This design tackles all the issues of ResourceBundles:

26

rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_validate
rgcms.pdf#_rgcms_methods_prefixes_validate
rgcms.pdf#_rgcms_methods_prefixes_validate
ugvw.pdf
http://stackoverflow.com/questions/14326653/java-internationalization-i18n-with-proper-plurals/14327683#14327683
https://www.gnu.org/software/gettext/manual/index.html

• the .po message format is such that any given message text to translate need only be translated
once, even if it appears in multiple places in the application (eg "Name")

• the .po message format includes translations for (optional) plural form as well as singular form

• there are lots of freely available editors to be found, many summarized on this Drupal.org
webpage.

In fact, there are also online communities/platforms of translators to assist with translating
files. One such is crowdin (nb: this link does not imply endorsement).

In Apache Isis' implementation, if the translation is missing from the .po file then the original
message text from the .pot file will be returned. In fact, it isn’t even necessary for there to be any
.po files; .po translations can be added piecemeal as the need arises.

4.2. TranslationService
The cornerstone of Apache Isis' support for i18n is the TranslationService service. This is defined in
the applib with the following API:

public interface TranslationService {
 public String translate(①
 final String context,
 final String text);
 public String translate(②
 final String context,
 final String singularText,
 final String pluralText,
 final int num);
 public enum Mode {
 READ,
 WRITE;
 }
 Mode getMode(); ③
}

① is to translate the singular form of the text

② is to translate the plural form of the text

③ indicates whether the translation service is in read or write mode.

The translate(…) methods are closely modelled on GNU’s gettext API. The first version is used
when no translation is required, the second is when both a singular and plural form will be
required, with the num parameter being used to select which is returned. In both cases the context
parameter provides some contextual information for the translator; this generally corresponds to
the class member.

The mode meanwhile determines the behaviour of the service. More on this below.

27

https://www.google.co.uk/search?q=.po+file+editor
https://www.drupal.org/node/11131
https://crowdin.com/

4.2.1. TranslationServicePo

Isis provides a default implementation of TranslationService, namely TranslationServicePo.

If the service is running in the normal read mode, then it simply provides translations for the locale
of the current user. This means locates the appropriate .po file (based on the requesting user’s
locale), finds the translation and returns it.

If however the service is configured to run in write mode, then it instead records the fact that the
message was requested to be translated (a little like a spy/mock in unit testing mock), and returns
the original message. The service can then be queried to discover which messages need to be
translated. All requested translations are written into the .pot file.

To make the service as convenient as possible to use, the service configures itself as follows:

• if running in prototype mode deployment type or during integration tests, then the service runs
in write mode, in which case it records all translations into the .pot file. The .pot file is written
out when the system is shutdown.

• if running in server (production) mode deployment type, then the service runs in read mode. It
is also possible to set a configuration setting in isis.properties to force read mode even if
running in prototype mode (useful to manually test/demo the translations).

When running in write mode the original text is returned to the caller untranslated. If in read
mode, then the translated .po files are read and translations provided as required.

4.3. Imperative messages
The TranslationService is used internally by Apache Isis when building up the metamodel; the
name and description of every class, property, collection, action and action parameter is
automatically translated. Thus the simple act of bootstrapping Apache Isis will cause most of the
messages requiring translation (that is: those for the Apache Isis metamodel) to be captured by the
TranslationService.

However, for an application to be fully internationalized, any validation messages (from either
disableXxx() or validateXxx() supporting methods) and also possibly an object’s title (from the
title() method) will also require translation. Moreover, these messages must be captured in the
.pot file such that they can be translated.

4.3.1. TranslatableString

The first part of the puzzle is tackled by an extension to Apache Isis' programming model. Whereas
previously the disableXxx() / validateXxx() / title() methods could only return a java.lang.String,
they may now optionally return a TranslatableString (defined in Isis applib) instead.

Here’s a (silly) example from the SimpleApp archetype:

28

rgcfg.pdf#_rgcfg_deployment-types
rgcfg.pdf#_rgcfg_deployment-types
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

public TranslatableString validateUpdateName(final String name) {
 return name.contains("!")? TranslatableString.tr("Exclamation mark is not
allowed"): null;
}

This corresponds to the following entry in the .pot file:

#: dom.simple.SimpleObject#updateName()
msgid "Exclamation mark is not allowed"
msgstr ""

The full API of TranslatableString is modelled on the design of GNU gettext (in particular the
gettext-commons library):

public final class TranslatableString {
 public static TranslatableString tr(①
 final String pattern,
 final Object... paramArgs) { ... }
 public static TranslatableString trn(②
 final String singularPattern,
 final String pluralPattern,
 final int number,
 final Object... paramArgs) { ... }
 public String translate(③
 final TranslationService translationService,
 final String context) { ... }
}

① returns a translatable string with a single pattern for both singular and plural forms.

② returns a translatable string with different patterns for singular and plural forms; the one to use
is determined by the 'number' argument

③ translates the string using the provided TranslationService, using the appropriate
singular/regular or plural form, and interpolating any arguments.

The interpolation uses the format {xxx}, where the placeholder can occur multiple times.

For example:

final TranslatableString ts = TranslatableString.tr(
 "My name is {lastName}, {firstName} {lastName}.",
 "lastName", "Bond", "firstName", "James");

would interpolate (for the English locale) as "My name is Bond, James Bond".

For a German user, on the other hand, if the translation in the corresponding .po file was:

29

https://code.google.com/p/gettext-commons/wiki/Tutorial

#: xxx.yyy.Whatever#context()
msgid "My name is {lastName}, {firstName} {lastName}."
msgstr "Iche heisse {firstName} {lastName}."

then the translation would be: "Ich heisse James Bond".

The same class is used in DomainObjectContainer so that you can raise translatable info, warning and
error messages; each of the relevant methods are overloaded.

For example:

public interface DomainObjectContainer {
 void informUser(String message);
 void informUser(
 TranslatableMessage message,
 final Class<?> contextClass, final String contextMethod); ①
 ...
}

① are concatenated together to form the context for the .pot file.

4.3.2. TranslatableException

Another mechanism by which messages can be rendered to the user are as the result of exception
messages thrown and recognized by an ExceptionRecognizer.

In this case, if the exception implements TranslatableException, then the message will automatically
be translated before being rendered. The TranslatableException itself takes the form:

public interface TranslatableException {
 TranslatableString getTranslatableMessage(); ①
 String getTranslationContext(); ②
}

① the message to translate. If returns null, then the Exception#getMessage() is used as a fallback

② the context to use when translating the message

4.4. Wicket Viewer
The Wicket viewer (its labels and messages) is also internationalized using the TranslationService.
This is done through an Isis-specific implementation of the Wicket framework’s
org.apache.wicket.Localizer class, namely LocalizerForIsis.

The Wicket Localizer defines the following API:

30

rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_spi_ExceptionRecognizer
ugvw.pdf

public String getString(
 final String key, ①
 final Component component, ②
 final IModel<?> model,
 final Locale locale,
 final String style,
 final String defaultValue)
 throws MissingResourceException { ... }

① The key to obtain the resource for

② The component to get the resource for (if any)

For example, key might be a value such as "okLabel", while component an internal class of the Wicket
viewer, such as EntityPropertiesForm.

The LocalizerForIsis implementation uses the key as the msgId, while the fully qualified class name
of the component is used as a context. There is one exception to this: if the component is the third-
party select2 component (used for drop-downs), then that class name is used directly.

In the main, using Isis' i18n support means simply adding the appropriate translations to the
translation.po file, for each locale that you require. If the translations are missing then the original
translations from the Wicket resource bundles will be used instead.

4.4.1. Commonly used

Most of the translation requirements can be covered by adding in the following msgIds:

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "CollectionContentsAsAjaxTablePanelFactory.Table"
msgstr "Table"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "CollectionContentsAsUnresolvedPanel.Hide"
msgstr "Hide"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "aboutLabel"
msgstr "About"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "cancelLabel"
msgstr "Cancel"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "datatable.no-records-found"
msgstr "No Records Found"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "editLabel"

31

msgstr "Edit"

#: org.wicketstuff.select2.Select2Choice
msgid "inputTooShortPlural"
msgstr "Please enter {number} more characters"

#: org.wicketstuff.select2.Select2Choice
msgid "inputTooShortSingular"
msgstr "Please enter 1 more character"

#: org.wicketstuff.select2.Select2Choice
msgid "loadMore"
msgstr "Load more"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "logoutLabel"
msgstr "Logout"

#: org.wicketstuff.select2.Select2Choice
msgid "noMatches"
msgstr "No matches"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "okLabel"
msgstr "OK"

#: org.wicketstuff.select2.Select2Choice
msgid "searching"
msgstr "Searching..."

#: org.wicketstuff.select2.Select2Choice
msgid "selectionTooBigPlural"
msgstr "You can only select {limit} items"

#: org.wicketstuff.select2.Select2Choice
msgid "selectionTooBigSingular"
msgstr "You can only select 1 item"

4.4.2. Login/self-sign-up

In addition, there are a reasonably large number of messages that are used for both login and the
user registration (self sign-up) and password reset features.

These are:

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "AutoLabel.CSS.required"
msgstr "Required"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage

32

ugvw.pdf#_ugvw_features_user-registration

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "confirmPasswordLabel"
msgstr "Confirm password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
msgid "emailIsNotAvailable"
msgstr "The given email is already in use"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "emailPlaceholder"
msgstr "Enter your email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
msgid "emailPlaceholder"
msgstr "Enter an email for the new account"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "emailLabel"
msgstr "Email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "emailSentMessage"
msgstr "An email has been sent to '${email}' for verification."

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "forgotPasswordLinkLabel"
msgstr "Forgot your password?"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "loginHeader"
msgstr "Login"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "noSuchUserByEmail"
msgstr "There is no account with this email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "noUserForAnEmailValidToken"
msgstr "The account seems to be either already deleted or has changed its email
address. Please try again."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordChangeSuccessful"
msgstr "The password has been changed successfully. You can <a class=\"alert-success\"

33

style=\"text-decoration:underline;\" href=\"${signInUrl}\">login now."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordChangeUnsuccessful"
msgstr "There was a problem while updating the password. Please try again."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordLabel"
msgstr "Password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordPlaceholder"
msgstr "Enter password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordResetExpiredOrInvalidToken"
msgstr "You are trying to reset the password for an expired or invalid token"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordResetHeader"
msgstr "Forgot password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordResetSubmitLabel"
msgstr "Submit"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "registerButtonLabel"
msgstr "Register"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
msgid "registerHeader"
msgstr "Register"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "rememberMeLabel"
msgstr "Remember Me"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "resetButtonLabel"
msgstr "Reset"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "signInButtonLabel"
msgstr "Sign in"

34

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "signUpButtonLabel"
msgstr "Don't have an account? Sign up now."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "signUpButtonLabel"
msgstr "Verify email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
msgid "signUpHeader"
msgstr "Sign Up"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "usernameIsNotAvailable"
msgstr "The provided username is already in use"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "usernameLabel"
msgstr "Username"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "usernamePlaceholder"
msgstr "Username"

4.5. Integration Testing
So much for the API; but as noted, it is also necessary to ensure that the required translations are
recorded (by the TranslationService) into the .pot file.

For this, we recommend that you ensure that all such methods are tested through an integration
test (not unit test).

For example, here’s the corresponding integration test for the "Exclamation mark" example from
the simpleapp (above):

35

ugtst.pdf#_ugtst_integ-test-support
ugtst.pdf#_ugtst_integ-test-support

@Rule
public ExpectedException expectedException = ExpectedException.none();

@Inject
FixtureScripts fixtureScripts;

@Test
public void failsValidation() throws Exception {
 // given
 RecreateSimpleObjects fs = new RecreateSimpleObjects().setNumber(1);
 fixtureScripts.runFixtureScript(fs, null);
 SimpleObject simpleObjectWrapped = wrap(fs.getSimpleObjects().get(0));

 // expect
 expectedExceptions.expect(InvalidException.class);
 expectedExceptions.expectMessage("Exclamation mark is not allowed");

 // when
 simpleObjectWrapped.updateName("new name!");
}

Running this test will result in the framework calling the validateUpdateName(…) method, and thus
to record that a translation is required in the .pot file.

When the integration tests are complete (that is, when Apache Isis is shutdown), the
TranslationServicePo will write out all captured translations to its log (more on this below). This
will include all the translations captured from the Apache Isis metamodel, along with all
translations as exercised by the integration tests.

To ensure your app is fully internationalized app, you must therefore:

• use TranslatableString rather than String for all validation/disable and title methods.

• ensure that (at a minimum) all validation messages and title methods are integration tested.



We make no apologies for this requirement: one of the reasons that we decided to
implement Apache Isis' i18n support in this way is because it encourages/requires
the app to be properly tested.

Behind the scenes Apache Isis uses a JUnit rule (ExceptionRecognizerTranslate) to
intercept any exceptions that are thrown. These are simply passed through to the
registered ExceptionRecognizers so that any messages are recorded as requiring
translation.

4.6. Escaped strings
Translated messages can be escaped if required, eg to include embedded markup.

36

rgsvc.pdf#_rgsvc_spi_ExceptionRecognizer

#: com.mycompany.myapp.OrderItem#quantity
msgid "<i>Quantity</i>"
msgstr "<i>Quantité</i>"

For this to work, the namedEscaped() attribute must be specified using either the dynamic layout json
file, or using an annotation such as @PropertyLayout or @ParameterLayout.

For example:

@ParameterLayout(
 named="<i>Quantity</i>", ①
 namedEscaped=false
)
public Integer getQuantity() { ... }

① required (even though it won’t be used when a translation is read; otherwise the escaped flag is
ignored)

4.7. Configuration
There are several different aspects of the translation service that can be configured.

4.7.1. Logging

To configure the TranslationServicePo to write to out the translations.pot file, add the following to
the integtests logging.properties file:

log4j.appender.translations-po=org.apache.log4j.FileAppender
log4j.appender.translations-po.File=./translations.pot
log4j.appender.translations-po.Append=false
log4j.appender.translations-po.layout=org.apache.log4j.PatternLayout
log4j.appender.translations-po.layout.ConversionPattern=%m%n

log4j.logger.org.apache.isis.core.runtime.services.i18n.po.PoWriter=INFO,translations-
po
log4j.additivity.org.apache.isis.core.runtime.services.i18n.po.PotWriter=false

Just to repeat, this is not the WEB-INF/logging.properties file, it should instead be added to the
integtests/logging.properties file.

4.7.2. Location of the .po files

The default location of the translated .po files is in the WEB-INF directory. These are named and
searched for similarly to regular Java resource bundles.

For example, assuming these translations:

37

ugfun.pdf#_ugfun_object-layout_dynamic
rgant.pdf#_rgant_PropertyLayout
rgant.pdf#_rgant_ParameterLayout

/WEB-INF/translations-en-US.po
 /translations-en.po
 /translations-fr-FR.po
 /translations.po

then:

• a user with en-US locale will use translations-en-US.po

• a user with en-GB locale will use translations-en.po

• a user with fr-FR locale will use translations-fr-FR.po

• a user with fr-CA locale will use translations.po

The basename for translation files is always translations; this cannot be altered.

4.7.3. Externalized translation files

Normally Apache Isis configuration files are read from the WEB-INF file. However, Apache Isis can be
configured to read config files from an external directory; this is also supported for translations.

Thus, if in web.xml the external configuration directory has been set:

<context-param>
 <param-name>isis.config.dir</param-name>
 <param-value>location of external config directory</param-value>
</context-param>

Then this directory will be used as the base for searching for translations (rather than the default
'WEB-INF/' directory).

4.7.4. Force read mode

As noted above, if running in prototype mode then TranslationServicePo will be in write mode, if in
production mode then will be in read mode. To force read mode (ie use translations) even if in
prototype mode, add the following configuration property to isis.properties:

isis.services.translation.po.mode=read

4.8. Supporting services
The TranslationServicePo has a number of supporting/related services.

4.8.1. LocaleProvider

The LocaleProvider API is used by the TranslationServicePo implementation to obtain the locale of
the "current user".

38

A default implementation is provided by the Wicket viewer.



Note that this default implementation does not support requests made through
the Restful Objects viewer (there is no Wicket 'application' object available); the
upshot is that requests through Restful Objects are never translated. Registering a
different implementation of LocaleProvider that taps into appropriate REST
(RestEasy?) APIs would be the way to address this.

4.8.2. TranslationsResolver

The TranslationResolver is used by the TranslationService implementation to lookup translations
for a specified locale. It is this service that reads from the WEB-INF/ (or externalized directory).

4.8.3. TranslationServicePoMenu

The TranslationServicePoMenu provides a couple of menu actions in the UI (prototype mode only)
that interacts with the underlying TranslationServicePo:

• the downloadTranslationsFile() action - available only in write mode - allows the current .pot
file to be downloaded.



While this will contain all the translations from the metamodel, it will not
necessarily contain all translations for all imperative methods returning
TranslatableString instances; which are present and which are missing will
depend on which imperative methods have been called (recorded by the
service) prior to downloading.

• the clearTranslationsCache() action - available only in read mode - will clear the cache so that
new translations can be loaded.

This allows a translator to edit the appropriate translations-xx-XX.po file and check the
translation is correct without having to restart the app.

39

Chapter 5. Headless access
This section tackles the topic of enabling access to an Isis application directly, or at least, not
through either the Wicket or Restful viewers.

There are several main use-cases:

• enabling background execution, eg of a thread managed by Quartz scheduler and running
within the webapp

• integration from other systems, eg for a subscriber on a pub/sub mechanism such as Camel,
pushing changes through an Apache Isis domain model.

• leveraging an Isis application within a batch process

Note that the calling thread runs in the same process space as the Apache Isis domain object model
(must be physically linked to the JAR files containing the domain classes). For use cases where the
calling thread runs in some other process space (eg migrating data from a legacy system), then the
Restful Objects viewer is usually the way to go.

The API described in this chapter is reasonably low-level, allowing code to interact very directly
with the Apache Isis metamodel and runtime. Such callers should be considered trusted: they do
not (by default) honour any business rules eg implicit in the Isis annotations or
hide/disable/validate methods. However the WrapperFactory service could be used to enforce such
business rules if required.

5.1. AbstractIsisSessionTemplate
The AbstractIsisSessionTemplate class (whose name is inspired by the Spring framework’s naming
convention for similar classes that query JDBC, JMS, JPA etc.) provides the mechanism to open up a
'session' within the Apache Isis framework, in order to resolve and interact with entities.

The class itself is intended to be subclassed:

public abstract class AbstractIsisSessionTemplate {

 public void execute(final AuthenticationSession authSession, final Object context)
{ ... } ①
 protected abstract void doExecute(Object context); ②

 protected ObjectAdapter adapterFor(final Object targetObject) { ... }
 protected ObjectAdapter adapterFor(final RootOid rootOid) { ... }

 protected PersistenceSession getPersistenceSession() { ... }
 protected IsisTransactionManager getTransactionManager() { ... }
 protected AdapterManager getAdapterManager() { ... }
}

① execute(…) sets up the IsisSession and delegates to …

40

ugvw.pdf
ugvro.pdf
ugvro.pdf
rgsvc.pdf#_rgsvc_api_WrapperFactory
http://docs.spring.io/spring/docs/2.5.x/reference/jdbc.html#jdbc-JdbcTemplate
http://docs.spring.io/spring/docs/2.5.x/reference/jms.html#jms-jmstemplate
http://docs.spring.io/spring/docs/2.5.x/reference/orm.html#orm-jpa-template

② doExecute(…), the mandatory hook method for subclasses to implement. The passed object
represents passes a context from the caller (eg the scheduler, cron job, JMS etc) that instantiated
and executed the class.

The protected methods expose key internal APIs within Apache Isis, for the subclass to use as
necessary.


One notable feature of AbstractIsisSessionTemplate is that it will automatically
inject any domain services into itself. Thus, it is relatively easy for the subclass to
"reach into" the domain, through injected repository services.

5.2. BackgroundCommandExecution
The BackgroundCommandExecution class (a subclass of AbstractIsisSessionTemplate) is intended to
simplify the execution of background Commands persisted by way of the CommandService and the
BackgroundCommandService.

Its signature is:

public abstract class BackgroundCommandExecution extends AbstractIsisSessionTemplate {
 protected void doExecute(Object context) { ... }
 protected abstract List<? extends Command> findBackgroundCommandsToExecute(); ①
}

① findBackgroundCommandsToExecute() is a mandatory hook method for subclasses to implement.

This allows for different implementations of the CommandService and BackgroundCommandService to
persist to wherever.

The diagram below (yuml.me/363b335f) shows the dependencies between these various classes:

41

rgsvc.pdf#_rgsvc_spi_CommandService
rgsvc.pdf#_rgsvc_spi_BackgroundCommandService
http://yuml.me/edit/363b335f

Figure 1. Inheritance Hierarchy for BackgroundCommandExecution

5.2.1. Background Execution

The BackgroundCommandExecutionFromBackgroundCommandServiceJdo is a concrete subclass of
BackgroundCommandExecution (see the BackgroundCommandService), the intended use being for the class
to be instantiated regularly (eg every 10 seconds) by a scheduler such as Quartz) to poll for Commands
to be executed, and then execute them.

This implementation queries for Commands persisted by the Isis addons Command Module's
implementations of CommandService and BackgroundCommandService using the
BackgroundCommandServiceJdoRepository.

The diagram below (yuml.me/25343da1) shows the inheritance hierarchy for this class:

42

rgsvc.pdf#_rgsvc_api_BackgroundService
http://quartz-scheduler.org
http://www.isisaddons.org/isis-module-command
rgsvc.pdf#_rgsvc_spi_CommandService
rgsvc.pdf#_rgsvc_spi_BackgroundCommandService
http://yuml.me/edit/25343da1

Figure 2. Inheritance Hierarchy for BackgroundCommandExecutionFromBackgroundCommandServiceJdo

43

Chapter 6. Other Techniques
This chapter pulls together a number of more advanced techniques that we’ve discovered and
developed while building our own Isis applications.

6.1. Overriding JDO Annotations
The JDO Objectstore (or rather, the underlying DataNucleus implementation) builds its own
persistence metamodel by reading both annotations on the class and also by searching for
metadata in XML files. The metadata in the XML files takes precedence over the annotations, and so
can be used to override metadata that is "hard-coded" in annotations.

For example, as of 1.9.0 the various Isis addons modules (not ASF) use schemas for each entity. For
example, the AuditEntry entity in the audit module is annotated as:

@javax.jdo.annotations.PersistenceCapable(
 identityType=IdentityType.DATASTORE,
 schema = "IsisAddonsAudit",
 table="AuditEntry")
public class AuditEntry {
 ...
}

This will map the AuditEntry class to a table "IsisAddonsAudit"."AuditEntry"; that is using a custom
schema to own the object.

Suppose though that for whatever reason we didn’t want to use a custom schema but would rather
use the default. We can override the above annotation using a package.jdo file, for example:

<?xml version="1.0" encoding="UTF-8" ?>
<jdo xmlns="http://xmlns.jcp.org/xml/ns/jdo/jdo"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jdo/jdo
 http://xmlns.jcp.org/xml/ns/jdo/jdo_3_0.xsd" version="3.0">
 <package name="org.isisaddons.module.audit.dom">
 <class name="AuditEntry" schema="PUBLIC" table="IsisAddonsAuditEntry">
 </class>
 </package>
</jdo>

This file should be placed can be placed in src/main/java/META-INF within your application’s dom
module.


You can use a mixin action on Persistable mixin to download the JDO class
metadata in XML form.

44

http://www.isisaddons.org
http://github.com/isisaddons/isis-module-audit
rgcms.pdf#_rgcms_classes_mixins_Persistable



• The same approach should work for any other JDO metadata, but some
experimentation might be required.+

For example, in writing up the above example we found that writing
schema="" (in an attempt to say, "use the default schema for this table")
actually caused the original annotation value to be used instead.

• Forcing the schema to "PUBLIC" (as in the above example) works, but it isn’t
ideal because the name "PUBLIC" is not vendor-neutral (it works for HSQLDB,
but MS SQL Server uses "dbo" as its default).

• As of 1.9.0 Apache Isis will automatically (attempt) to create the owning
schema for a given table if it does not exist. This behaviour can be
customized, as described in the section on using modules.

• You may need to override the entire class metadata rather than individual
elements; the mixin mentioned above can help here.

6.2. Mapping RDBMS Views

 TODO - as used in Estatio

6.3. Transactions and Errors
In Apache Isis, every action invocation (in fact, every interaction) is automatically wrapped in a
transaction, and any repository query automatically does a flush.

What that means is that there’s no need to explicitly start or commit transactions in Apache Isis;
this will be done for you. Indeed, if you do try to manage transactions (eg by reaching into the JDO
PersistenceManager exposed by the IsisJdoSupport domain service, then you are likely to confuse
Isis and get a stack trace for your trouble.

6.3.1. Aborting Transactions

If you want to abort Apache Isis' transaction, this can be done by throwing RecoverableException (or
any subclass, eg ApplicationException). The transaction will be aborted, and the exception message
will be displayed to the user.

If you throw any other exception (ie not a subclass of RecoverableException), then the users will see
an error page (if Wicket viewer) or a 500 (if Restful Objects viewer).

6.3.2. Raise message/errors to users

 TODO - DomainObjectContainer

6.3.3. Exception Recognizers

45

http://github.com/estatio/estatio
rgsvc.pdf#_rgsvc_api_IsisJdoSupport
rgsvc.pdf#_rgsvc_api_DomainObjectContainer_messages-api

 TODO - ExceptionRecognizer service

6.4. Multi-tenancy

 TODO - as supported by (non-ASF) Isis addons' security module.

6.5. Persisted Title
Normally the title of an object is not persisted to the database, rather it is recomputed automatically
from underlying properties. On occasion though you might want the title to also be persisted;
either to make things easier for the DBA, or for an integration scenario, or some other purpose.

We can implement this feature by leveraging the JDO lifecycle. In the design we discuss here we
make it a responsibility of the entities to persist the title as a property, by implementing a
ObjectWithPersistedTitle interface:

public interface ObjectWithPersistedTitle {
 @PropertyLayout(hidden = Where.EVERYWHERE) ①
 String getTitle();
 void setTitle(final String title);
}

① we don’t want to expose this in the UI because the title is already prominently displayed.

We can then define a subscribing domain service that leverage this.

46

rgsvc.pdf#_rgsvc_spi_ExceptionRecognizer
http://github.com/isisaddons/isis-module-security
rgcms.pdf#_rgcms_methods_lifecycle_jdo-api

@DomainService(nature = NatureOfService.DOMAIN)
public class TitlingService extends AbstractSubscriber {
 @Subscribe
 public void on(final ObjectPersistingEvent ev) {
 handle(ev.getSource());
 }
 @Subscribe
 public void on(final ObjectUpdatingEvent ev) {
 handle(ev.getSource());
 }
 private void handle(final Object persistentInstance) {
 if(persistentInstance instanceof ObjectWithPersistedTitle) {
 final ObjectWithPersistedTitle objectWithPersistedTitle =
 (ObjectWithPersistedTitle) persistentInstance;
 objectWithPersistedTitle.setTitle(container.titleOf
(objectWithPersistedTitle));
 }
 }
 @Inject
 private DomainObjectContainer container;
}

Prior to 1.10.0 (when lifecycle events were introduced), this could also be be done by accessing the
JDO API directly:

47

@RequestScoped
@DomainService(nature = NatureOfService.DOMAIN)
public class TitlingService {
 @PostConstruct
 public void init() {
 isisJdoSupport.getJdoPersistenceManager().addInstanceLifecycleListener(
 new StoreLifecycleListener() {
 @Override
 public void preStore(final InstanceLifecycleEvent event) {
 final Object persistentInstance = event.getPersistentInstance();
 if(persistentInstance instanceof ObjectWithPersistedTitle) {
 final ObjectWithPersistedTitle objectWithPersistedTitle =
 (ObjectWithPersistedTitle) persistentInstance;
 objectWithPersistedTitle.setTitle(container.titleOf
(objectWithPersistedTitle));
 }
 }
 @Override
 public void postStore(final InstanceLifecycleEvent event) {
 }
 }, null);
 }
 @Inject
 private IsisJdoSupport isisJdoSupport;
 @Inject
 private DomainObjectContainer container;
}

The above is probably the easiest and most straightforward design. One could imagine other
designs where the persisted title is stored elsewhere. It could even be stored off into an Apache
Lucene (or similar) database to allow for free-text searches.

6.6. Replacing Service Implns
The framework provides default implementations for many of the domain services. This is
convenient, but sometimes you will want to replace the default implementation with your own
service implementation.

The trick is to use the @DomainServiceLayout#menuOrder() attribute, specifying a low number
(typically "1").

For example, suppose you wanted to provide your own implementation of LocaleProvider. Here’s
how:

48

http://lucene.apache.org/
http://lucene.apache.org/
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgsvc.pdf#_rgsvc_api_LocaleProvider

@DomainService(
 nature = NatureOfService.DOMAIN
)
@DomainServiceLayout(
 menuOrder = "1" ①
)
public class MyLocaleProvider implements LocaleProvider {
 @Override
 public Locale getLocale() {
 return ...
 }
}

① takes precedence over the default implementation.

It’s also quite common to want to decorate the existing implementation (ie have your own
implementation delegate to the default); this is also possible and quite easy if using 1.10.0 or later:

@DomainService(
 nature = NatureOfService.DOMAIN
)
@DomainServiceLayout(
 menuOrder = "1"
①
)
public class MyLocaleProvider implements LocaleProvider {
 @Override
 public Locale getLocale() {
 return getDelegateLocaleProvider().getLocale();
②
 }
 Optional<LocaleProvider> delegateLocaleProvider;
③
 private LocaleProvider getDelegateLocaleProvider() {
 if(delegateLocaleProvider == null) {
 delegateLocaleProvider = Iterables.tryFind(localeProviders, input -> input
!= this); ④
 }
 return delegateLocaleProvider.orNull();
 }
 @Inject
 List<LocaleProvider> localeProviders;
⑤
}

① takes precedence over the default implementation when injected elsewhere.

② this implementation merely delegates to the default implementation

③ lazily populated

49

④ delegate to the first implementation that isn’t this implementation (else infinite loop!)

⑤ Injects all implementations, including this implemenation

50

Chapter 7. Customizing the Prog Model
This chapter explains the main APIs to extend or alter the programming conventions that Apache
Isis understands to build up its metamodel.

7.1. Custom validator
Apache Isis' programming model includes a validator component that detects and prevents (by
failing fast) a number of situations where the domain model is logically inconsistent.

For example, the validator will detect any orphaned supporting methods (eg hideXxx()) if the
corresponding property or action has been renamed or deleted but the supporting method was not
also updated. Another example is that a class cannot have a title specified both using title()
method and also using @Title annotation.


The support for disallowing deprecated annotations is also implemented using
the metamodel validator.

You can also impose your own application-specific rules by installing your own metamodel
validator. To give just one example, you could impose naming standards such as ensuring that a
domain-specific abbreviation such as "ISBN" is always consistently capitalized wherever it appears
in a class member.

 Isis' Maven plugin will also validate the domain object model during build time.

7.1.1. API and Implementation

There are several ways to go about implementing a validator.

MetaModelValidator

Any custom validator must implement Apache Isis' internal MetaModelValidator interface, so the
simplest option is just to implement MetaModelValidator directly:

public interface MetaModelValidator
 implements SpecificationLoaderSpiAware { ①
 public void validate(
 ValidationFailures validationFailures); ②
}

① the SpecificationLoader is the internal API providing access to the Apache Isis metamodel.

② add any metamodel violations to the ValidationFailures parameter (the collecting parameter
pattern)

Visitor

More often than not, you’ll want to visit every element in the metamodel, and so for this you can

51

rgant.pdf#_rgant_aaa_deprecated
http://c2.com/cgi/wiki?CollectingParameter

instead subclass from MetaModelValidatorVisiting.Visitor:

public final class MetaModelValidatorVisiting ... {
 public static interface Visitor {
 public boolean visit(①
 ObjectSpecification objectSpec, ②
 ValidationFailures validationFailures); ③
 }
 ...
}

① return true continue visiting specs.

② ObjectSpecification is the internal API representing a class

③ add any metamodel violations to the ValidationFailures parameter

You can then create your custom validator by subclassing MetaModelValidatorComposite and adding
the visiting validator:

public class MyMetaModelValidator extends MetaModelValidatorComposite {
 public MyMetaModelValidator() {
 add(new MetaModelValidatorVisiting(new MyVisitor()));
 }
}

If you have more than one rule then each can live in its own visitor.

SummarizingVisitor

As a slight refinement, you can also subclass from MetaModelValidatorVisiting.SummarizingVisitor:

public final class MetaModelValidatorVisiting ... {
 public static interface SummarizingVisitor extends Visitor {
 public void summarize(ValidationFailures validationFailures);
 }
 ...
}

A SummarizingVisitor will be called once after every element in the metamodel has been visited.
This is great for performing checks on the metamodel as a whole. For example, Apache Isis uses
this to check that there is at least one @Persistable domain entity defined.

7.1.2. Configuration

Once you have implemented your validator, you must register it with the framework by defining
the appropriate configuration property:

52

isis.reflector.validator=com.mycompany.myapp.MyMetaModelValidator

7.2. Finetuning
The core metamodel defines APIs and implementations for building the Apache Isis metamodel: a
description of the set of entities, domain services and values that make up the domain model.

The description of each domain class consists of a number of elements:

ObjectSpecification

Analogous to java.lang.Class; holds information about the class itself and holds collections of
each of the three types of class' members (below);

OneToOneAssociation

Represents a class member that is a single-valued property of the class. The property’s type is
either a reference to another entity, or is a value type.

OneToManyAssociation

Represents a class member that is a collection of references to other entities. Note that Apache
Isis does not currently support collections of values.

ObjectAction

Represents a class member that is an operation that can be performed on the action. Returns
either a single value, a collection of entities, or is void.

The metamodel is built up through the ProgrammingModel, which defines an API for registering a
set of FacetFactorys. Two special FacetFactory implementations - PropertyAccessorFacetFactory
and CollectionAccessorFacetFactory - are used to identify the class members. Pretty much all the
other FacetFactorys are responsible for installing Facets onto the metamodel elements.

There are many many such Facets, and are used to do such things get values from properties or
collections, modify properties or collections, invoke action, hide or disable class members, provide
UI hints for class members, and so on. In short, the FacetFactorys registered defines the Apache Isis
programming conventions.

7.2.1. Modifying the Prog. Model

The default implementation of ProgrammingModel is ProgrammingModelFacetsJava5, which registers
a large number of FacetFactorys.

By editing isis.properties you can modify the programming conventions either by (a) using the
default programming model, but tweaking it to include new `FacetFactory`s or exclude existing, or
(b) by specifying a completely different programming model implementation.

Let’s see how this is done.

53

https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/spec/ObjectSpecification.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/spec/feature/OneToOneAssociation.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/spec/feature/OneToManyAssociation.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/spec/feature/ObjectAction.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/progmodel/ProgrammingModel.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/facets/FacetFactory.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/facets/properties/accessor/PropertyAccessorFacetViaAccessorFactory.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/facets/collections/accessor/CollectionAccessorFacetViaAccessorFactory.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/core/metamodel/facetapi/Facet.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/progmodels/dflt/ProgrammingModelFacetsJava5.java

Including or excluding facets

Suppose that you wanted to completely remove support for the (already deprecated) @ActionOrder
annotation. This would be done using:

isis.reflector.facets.exclude=org.apache.isis.core.metamodel.facets.object.actionorder
.annotation.ActionOrderFacetAnnotationFactory

Or, suppose you wanted to use the example "namefile" FacetFactory as part of your programming
conventions, use:

isis.reflector.facets.include=org.apache.isis.example.metamodel.namefile.facets.NameFi
leFacetFactory

To include/exclude more than one FacetFactory, specify as a comma-separated list. And if you want
to dig into this in more detail, the code that implements this logic is
JavaReflectorInstallerNoDecorators.


This thread from the users mailing list (in Apr 2014) shows a typical
customization (to enable per-instance security) (though note that Multi-Tenancy
is now a better solution to that particular use-case.

7.2.2. Replacing the Prog. Model

If you want to make many changes to the programming model, then (rather than include/exclude
lots of facet factories) you can specify a completely new programming model. For this you’ll first
need an implementation of ProgrammingModel.

One option is to subclass from ProgrammingModelFacetsJava5; in your subclass you could remove any
FacetFactorys that you wanted to exclude, as well as registering your own implementations.

To tell Apache Isis to use your new programming model, use:

isis.reflector.facets=com.mycompany.myapp.isis.IsisProgrammingModel

Again, the code that implements this logic is JavaReflectorInstallerNoDecorators.

7.3. Layout Metadata Reader
The metadata for domain objects is obtained both statically and dynamically.

The default implementation for reading dynamic layout metadata is
org.apache.isis.core.metamodel.layoutmetadata.json.LayoutMetadataReaderFromJson, which is
responsible for reading from the Xxx.layout.json files on the classpath (for each domain entity Xxx).

You can also implement your own metadata readers and plug them into Apache Isis. These could

54

https://github.com/apache/isis/blob/master/mothballed/misc/metamodel/namefile/src/main/java/org/apache/isis/example/metamodel/namefile/facets/NameFileFacetFactory.java
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/progmodels/dflt/JavaReflectorInstallerNoDecorators.java
http://isis.markmail.org/thread/472c3mrvcgnripst
https://github.com/apache/isis/blob/master/core/metamodel/src/main/java/org/apache/isis/progmodels/dflt/JavaReflectorInstallerNoDecorators.java
ugfun.pdf#_ugfun_object-layout_static
ugfun.pdf#_ugfun_object-layout_dynamic

read from a different file format, or they could, even, read data dynamically from a URL or
database. (Indeed, one could imagine an implementation whereby users could share layouts, all
stored in some central repository).



The use of dynamic layouts through the .layout.json - and therefore also the
LayoutMetadataReader - is DEPRECATED. Instead, the dynamic XML layouts using
.layout.xml enables much more sophisticated custom layouts than those afforded
by .layout.json.

By default, custom XML layouts are read from the classpath. This behaviour can
be customized by providing an alternative implementation of the
GridLoaderService.

7.3.1. API and Implementation

Any reader must implement Apache Isis' internal LayoutMetadataReader interface:

public interface LayoutMetadataReader {
 public Properties asProperties(Class<?> domainClass) throws ReaderException;
}

The implementation "simply" returns a set of properties where the property key is a unique
identifier to both the class member and also the facet of the class member to which the metadata
relates.

See the implementation of the built-in LayoutMetadataReaderFromJson for more detail.

Returning either null or throwing an exception indicates that the reader was unable to load any
metadata for the specified class.

Extended API

Optionally the reader can implement the extended LayoutMetadaReader2 API:

55

ugfun.pdf#_ugfun_object-layout_dynamic_xml
rgsvc.pdf#_rgsvc_spi_GridLoaderService

public interface LayoutMetadataReader2 extends LayoutMetadataReader {
 public static class Support {
 public static Support entitiesOnly() {
 return new Support(false,false,false,false,false,false,false);
 }
 ...
 public boolean interfaces() { ... } ①
 public boolean anonymous() { ... } ②
 public boolean synthetic() { ... } ③
 public boolean array() { ... } ④
 public boolean enums() { ... } ⑤
 public boolean applibValueTypes() { ⑥
 public boolean services() { ... } ⑦
 }
 Support support();
}

① whether this implementation can provide metadata for interface types.

② whether this implementation can provide metadata for anonymous classes.

③ whether this implementation can provide metadata for synthetic types.

④ whether this implementation can provide metadata for arrays.

⑤ whether this implementation can provide metadata for enums.

⑥ whether this implementation can provide metadata for applib value types.

⑦ whether this implementation can provide metadata for domain services.

The support() method returns a struct class that describes the types of classes are supported by this
implementation.

The LayoutMetadataReaderFromJson implements this extended API.

7.3.2. Configuration

Once you have implemented your validator, you must register it with the framework by defining
the appropriate configuration property:

isis.reflector.layoutMetadataReaders=\
 com.mycompany.myapp.MyMetaModelValidator,\

org.apache.isis.core.metamodel.layoutmetadata.json.LayoutMetadataReaderFromJson ①

① the property replaces any existing metadata readers; if you want to preserve the ability to read
from Xxx.layout.json then also register Apache Isis' built-in implementation.

56

Chapter 8. Deployment
This chapter provides guidance on some common deployment scenarios.

8.1. Command Line (WebServer)
As well as deploying an Apache Isis application into a servlet container, it is also possible to invoke
from the command line using the org.apache.isis.WebServer utility class. This is especially useful
while developing and testing, but may also suit some deployment scenarios (eg running as a
standalone EXE within a Docker container, for example). Internally the WebServer spins up a Jetty
servlet container.

The class also supports a number of command line arguments:

Table 2. Command line args for org.apache.isis.Webserver

Flag Long format Values
(default)

Description

-t --type server_prototype,
server
(server)

Deployment type

-m --manifest FQCN Fully qualified class name of the
AppManifest to use to bootstrap the system.
This flag sets/overrides the
isis.appManifest configuration property to
the specified class name.

-f --fixture FQCN Fully qualified class name of the fixture
(extending FixtureScript) to be run to
setup data.
This flag sets/overrides the isis.fixtures
configuration property to the specified
class name, and also sets the
isis.persistor.datanucleus.install-
fixtures configuration property to true to
instruct the JDO/DataNucleus objectstore to
actually load in the fixtures.
It is also possible to specify the fixture
class name using either the $IsisFixture or
$IsisFixtures environment variable (case
insensitive).

-p --port (8080) The port number to listen on.
This flag sets/overrides the isis.embedded-
web-server.port configuration property.

-c --config filename configuration file containing additional
configuration properties

57

rgcms.pdf#_rgcms_classes_super_AppManifest
rgcms.pdf#_rgcms_classes_super_FixtureScript

Flag Long format Values
(default)

Description

-D xxx=yyy Specify additional arbitrary configuration
properties. This can be specified multiple
times.
Further discussion below.

-v --version Prints the version, then quits

-h --help Prints a usage message, then quits

Note that the -D argument is not a system property, it is parsed by WebServer itself. That said, it is
also possible to specify system properties, and these will also be processed in the exact same way.

Said another way, properties can be specified either as application arguments:

java org.apache.isis.WebServer -Dxxx=yyy -Daaa=bbb

or as system properties:

java -Dxxx=yyy -Daaa=bbb org.apache.isis.WebServer



The Dummy class

The framework also provides the org.apache.isis.Dummy class, which consists of a
single empty main(String[]) method. It was introduced as a convenience for
developers using Eclipse in combination with the DataNucleus plugin; if used as a
launch target then it allow the entities to be enhanced withouth the running an
app.

8.2. Deploying to Tomcat
Some pointers when deploying to Tomcat (or any other servlet container).

8.2.1. Externalized Configuration

See the guidance below.

8.2.2. JVM Args

The WrapperFactory uses Javassist to create on-the-fly classes acting as a proxy. The cost of these
proxies can be mitigated using:

-XX:+CMSClassUnloadingEnabled -XX:+UseConcMarkSweepGC

58

rgsvc.pdf#_rgsvc_api_WrapperFactory
http://www.javassist.org

8.2.3. Using a JNDI Datasource

See the guidance in the configuring datanucleus section.

8.3. Externalized Configuration
As described here, by default Apache Isis itself bootstraps from the isis.properties configuration
file. It will also read configuration from the (optional) component/implementation-specific
configuration files (such as persistor_datanucleus.properties or viewer_wicket.properties), and also
(optional) component-specific configuration files (such as persistor.properties or
viewer.properties).

By default these are read from the WEB-INF directory. Having this configuration "baked into" the
application is okay in a development environment, but when the app needs to be deployed to a test
or production environment, this configuration should be read from an external location.

There are in fact several frameworks involved here, all of which need to be pointed to this external
location:

• Apache Isis itself, which (as already discussed) reads isis.properties and optional component-
specific config files.

• Apache Shiro, which reads the shiro.ini file (and may read other files referenced from that
file)

• Apache log4j 1.2, for logging, which reads logging.properties file

• although not used by Apache Isis, there’s a good chance you may be using the Spring framework
(eg if using Apache Active MQ or Apache Camel.

Each of these frameworks has its own way of externalizing its configuration.

8.3.1. Apache Isis' Config

To tell Apache Isis to load configuration from an external directory, specify the isis.config.dir
context parameter.

If the external configuration directory is fixed for all environments (systest, UAT, prod etc), then
you can specify within the web.xml itself:

<context-param>
 <param-name>isis.config.dir</param-name>
 <param-value>location of external config directory</param-value>
</context-param>

If however the configuration directory varies by environment, then the context parameter will be
specified to each installation of your servlet container. Most (if not all) servlet containers will
provide a means to define context parameters through proprietary config files.

For example, if using Tomcat 7.0, you would typically copy the empty

59

rgcfg.pdf#_rgcfg_configuring-datanucleus_using-jndi-data-source
rgcfg.pdf#_rgcfg_configuration-files
http://shiro.apache.org
http://logging.apache.org/log4j/1.2
http://activemq.apache.org
http://camel.apache.org

$TOMCAT_HOME/webapps/conf/context.xml to a file specific to the webapp, for example
$TOMCAT_HOME/webapps/conf/todo.xml. The context parameter would then be specified by adding the
following:

<Parameter name="isis.config.dir"
 value="/usr/local/tomcat/myapp/conf/"
 override="false"/>


Note that the override key should be set to "false", not "true". It indicates whether
the application’s own web.xml can override the setting. In most cases, you
probably want to disallow that.

For more detail, see the Tomcat documentation on defining a context and on context parameters.


Note that running the app using Apache Isis' org.apache.isis.WebServer

bootstrapper currently does not externalized Apache Isis configuration.

8.3.2. Shiro Config

If using Apache Isis' Shiro integration for authentication and/or authorization, note that it reads
from the shiro.ini configuration file. By default this also resides in WEB-INF.

Similar to Apache Isis, Shiro lets this configuration directory be altered, by specifying the
shiroConfigLocations context parameter.

You can therefore override the default location using the same technique as described above for
Apache Isis' isis.config.dir context parameter. For example:

<Parameter name="shiroConfigLocations"
 value="file:/usr/local/myapp/conf/shiro.ini"
 override="false" />


Note that Shiro is more flexible than Apache Isis; it will read its configuration
from any URL, not just a directory on the local filesystem.

8.3.3. Log4j Config

By default Apache Isis configures log4j to read the logging.properties file in the WEB-INF directory.
This can be overridden by setting the log4j.properties system property to the URL of the log4j
properties file.

For example, if deploying to Tomcat7, this amounts to adding the following to the CATALINA_OPTS
flags:

60

http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Defining_a_context
http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Context_Parameters
ugsec.pdf#_ugsec_configuring-isis-to-use-shiro

export CATALINA_OPTS="-
Dlog4j.configuration=/usr/local/tomcat/myapp/conf/logging.properties"

 CATALINA_OPTS was called TOMCAT_OPTS in earlier versions of Tomcat.

Further details an be found in the log4j documentation.

8.3.4. Spring Config

Although Apache Isis does not use Spring, it’s possible that your app may use other components
that do use Spring. For example, the (non-ASF) Isis addons' publishmq module uses ActiveMQ and
Camel to support publishing; both of these leverage Spring.

There are several ways to externalized Spring config, but the mechanism described here is similar
in nature to those that we use for externalizing Apache Isis' and Shiro’s configuration. In your
web.xml, you will probably load the Spring application context using code such as:

<listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-
class>
</listener>
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:my-application-context-config.xml
 </param-value>
</context-param>

Add a new application context propertyPlaceholderConfigurer-config.xml defining a
PropertyPlaceholderConfigurer bean.

61

https://logging.apache.org/log4j/1.2/manual.html#Example_Configurations
http://github.com/isisaddons/isis-module-publishmq

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">
 <bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations">
 <list>
 <value>${spring.config.file}</value>
 </list>
 </property>
 </bean>
</beans>

This reads the properties from a spring.config.file, defined as a context-param in the web.xml:

<context-param>
 <param-name>spring.config.file</param-name>
 <param-value>classpath:spring.properties</param-value>
</context-param>

Then update the bootstrapping in web.xml to use this new application context, eg:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:my-application-context-config.xml,
 classpath:propertyPlaceholderConfigurer-config.xml
 </param-value>
</context-param>

To use some other externalized configuration, override the spring.config.file property, eg using
Tomcat’s config file:

<Parameter name="spring.config.dir"
 value="file:/usr/local/myapp/conf/spring.properties"
 override="false" />

An alternative approach

As mentioned, there are several other ways to externalize Spring’s config; one approach is to use
Spring’s profile support.

62

For example, in the application context you could have:

<beans profile="default">
 <bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations">
 <list>
 <value>classpath:dev.properties</value>
 </list>
 </property>
 </bean>
</beans>
<beans profile="externalized">
 <bean id="propertyPlaceHolder"
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations">
 <list>
 <value>classpath:prod.properties</value>
 </list>
 </property>
 </bean>
</beans>

The idea being that specifying the "prod" profile rather than the "default" profile would cause a
different set of configuration properties to be read.

The active profile can be overridden with a system property, eg:

-Dspring.active.profiles=prod

take a look at this SO answer on using Spring profiles.

8.3.5. See also

See JVM args for other JVM args and system properties that you might want to consider setting.

8.4. Deploying to Google App Engine
The Google App Engine (GAE) provides a JDO API, meaning that you can deploy Apache Isis onto
GAE using the JDO objectstore.

However, GAE is not an RDBMS, and so there are some limitations that it imposes. This page gathers
together various hints, tips and workarounds.

8.4.1. Primary Keys and Owned/Unowned Relationships

All entities must have a @PrimaryKey. Within GAE, the type of this key matters.

63

http://stackoverflow.com/a/10041835/56880
ugbtb.adoc#_ugbtb_deployment_jvm-flags
https://cloud.google.com/appengine/docs

For an entity to be an aggregate root, (ie a root of an GAE entity group), its key must be a Long, eg:

Any collection that holds this entity type (eg ToDoItem#dependencies holding a collection of
ToDoItem`s) should then be annotated with `@Unowned (a GAE annotation).

If on the other hand you want the object to be owned (through a 1:m relationship somewhere) by
some other root, then use a String:

Note: if you store a relationship with a String key it means that the parent object owns the child,
any attempt to change the relationship raise and exception.

8.4.2. Custom Types

Currently Apache Isis' Blob and Clob types and the JODA types (LocalDate et al) are not supported in
GAE.

Instead, GAE defines a fixed set of value types, including BlobKey. Members of the Apache Isis
community have this working, though I haven’t seen the code.

The above notwithstanding, Andy Jefferson at DataNucleus tells us:

<div class="extended-quote-first"><p>GAE JDO/JPA does support some type conversion,
because looking at <a href="http://code.google.com/p/datanucleus-
appengine/source/browse/trunk/src/com/google/appengine/datanucleus/StoreFieldManager.java#34
9">StoreFieldManager.java for any field that is Object-based and not a relation nor Serialized it
will call <a href="http://code.google.com/p/datanucleus-
appengine/source/browse/trunk/src/com/google/appengine/datanucleus/TypeConversionUtils.java#7
36">TypeConverstionUtils.java and that looks for a <code>TypeConverter</code> (specify
<code>@Extension</code> with key of "type-converter-name" against a field and value as the
<code>TypeConverter</code> class) and it should convert it. Similarly when getting the value from
the datastore. </p></div>

On further investigation, it seems that the GAE implementation performs a type check on a
SUPPORTED_TYPES Java set, in com.google.appengine.api.datastore.DataTypeUtils:

if (!supportedTypes.contains(value.getClass())) {
 throw new IllegalArgumentException(prefix + value.getClass().getName() + " is not
a supported property type.");
}

We still need to try out Andy’s recipe, above.

8.5. Neo4J
As of 1.8.0 Apache Isis has experimental support for Neo4J, courtesy of DataNucleus' Neo4J
Datastore implementation.

The SimpleApp archetype has been updated so that they can be optionally run under Neo4J.

64

https://cloud.google.com/appengine/docs/java/datastore/entities#Properties_and_Value_Types
http://www.datanucleus.org/products/datanucleus/datastores/neo4j.html
http://www.datanucleus.org/products/datanucleus/datastores/neo4j.html
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype


In addition, the Isis addons' neoapp (non-ASF) is configured to run with an
embedded Neo4J server running alongside the Apache Isis webapp.

The steps below describe the configuration steps required to update an existing app.

8.5.1. ConnectionURL

In persistor.properties, update the JDO ConnectionURL property, eg:

isis.persistor.datanucleus.impl.javax.jdo.option.ConnectionURL=neo4j:neo4j_DB

The other connection properties (ConnectionDriverName, ConnectionUserName and ConnectionPassword)
should be commented out.

8.5.2. Update pom.xml

Add the following dependency to the webapp project’s pom.xml:

<dependencies>
 ...
 <dependency>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-neo4j</artifactId>
 <version>4.0.5</version> ①
 </dependency>
 ...
</dependencies>

① for Isis v1.9.0, use the value shown. for Isis v1.8.0, use 3.2.3.

In the SimpleApp archetype this is defined under the "neo4j" profile so can be activated using -P
neo4j.

8.5.3. Try it out!

If you want to quickly try out neo4j for yourself:

• run the SimpleApp archetype (v1.8.0)

• build the app:

• run the app:

If you visit the about page you should see the neo4j JAR files are linked in, and a neo4j_DB
subdirectory within the webapp directory.

65

http://github.com/isisaddons/isis-app-neoapp
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

8.6. JVM Flags

 TODO

The default JVM configuration will most likely not be appropriate for running Isis as a webapp. The
table below suggests some JVM args that you will probably want to modify:

Table 3. JVM args

Flag Description

-server Run the JVM in server mode, meaning that the
JVM should spend more time on the
optimization of the fragments of codes that are
most often used (hotspots). This leads to better
performance at the price of a higher overhead at
startup.

-Xms128m Minimum heap size -Xmx768m

Maximum heap size -XX:PermSize=64m

Minimum perm size (for class definitions) -XX:MaxPermSize=256m

Maximum perm size (for class definitions) -XX:+DisableExplicitGC

There are also a whole bunch of GC-related flags, that you might want to explore; see this detailed
Hotspot JVM documentation and also this blog post.

8.6.1. Configuring in Tomcat

If using Tomcat, update the CATALINA_OPTS variable. (This variable is also updated if configuring
logging to run externally).

66

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://blog.ragozin.info/2011/09/hotspot-jvm-garbage-collection-options.html

Chapter 9. web.xml
Apache Isis provides two different viewers, the Wicket viewer and the RestfulObjects viewer. You
can deploy both of these concurrently, or deploy just the Wicket viewer, or deploy just the Restful
Objects viewer. The configuration in web.xml varies accordingly, both in terms of the servlet context
listeners, filters and servlets.

If you are using Apache Isis' integration with Apache Shiro (for security) then this also needs
configuring in web.xml. See the security chapter for full details on this topic.

The servlets and filters are mapped to three main pipelines:

• /wicket - the Wicket viewer UI

• /restful - the Restful Objects resources (REST API)

• other paths, also static resources (such as .png, .css)

With the following key:

the diagram below shows the components to be configured if deploying both the Wicket viewer and
Restful Objects viewer:

67

ugvw.pdf
ugvro.pdf
ugsec.pdf#_ugsec_configuring-isis-to-use-shiro
images/runtime/web-xml/key.png
images/runtime/web-xml/wicket-and-ro.png

Here the Wicket viewer is responsible for the main bootstrapping of Apache Isis itself, in other
words the shared (global) metadata; this is done by the IsisWicketApplication class (extending the
WicketApplication Wicket API). This class is also responsible for Apache Isis' own session and
transaction management.

The Restful Objects viewer - being a JAX-RS application implemented using the RestEasy framework
- requires the RestEasyBootstrapper servlet context listener. It is this context listener that also sets
up the RestfulObjectsApplication, which is then delegated to by the RestEasy HttpServletDispatcher.
This pipeline uses the IsisSessionFilter and IsisTransactionFilterForRestfulObjects to perform
the session and transaction management before it hits the RestEasy servlet.

If only the Wicket viewer is deployed, then the diagram is more or less the same: the RestEasy
servlet, context listener and supporting filters are simply removed:

Finally, if only the Restful Objects viewer is deployed, then things change a little more subtly. Here,
the Wicket filter is no longer needed. In its place, though the IsisWebAppBootstrapper context
listener is required: this is responsible for seting up the shared (global) metadata.

68

images/runtime/web-xml/wicket-only.png

The following sections detail these various listeners, filters and servlets in more detail.

9.1. Servlet Context Listeners
Servlet context listeners are used to perform initialization on application startup. Both Shiro (if
configured as the security mechanism) and RestEasy (for the Restful Objects viewer) require their
own context listener. In addition, if the Wicket viewer is not being used, then additional Apache
Isis-specific listener is required for bootstrapping of the Apache Isis framework itself.

9.1.1. EnvironmentLoaderListener (Shiro)

Bootstrap listener to startup and shutdown the web application’s Shiro WebEnvironment at startup
and shutdown respectively.

Its definition is:

<listener>
 <listener-class>org.apache.shiro.web.env.EnvironmentLoaderListener</listener-
class>
</listener>

9.1.2. IsisWebAppBootstrapper

The IsisWebAppBootstrapper servlet context listener bootstraps the shared (global) metadata for the
Apache Isis framework. This listener is not required (indeed must not be configured) if the Wicket
viewer is in use.

69

images/runtime/web-xml/ro-only.png

Its definition is:

<listener>
 <listener-class>org.apache.isis.core.webapp.IsisWebAppBootstrapper</listener-
class>
</listener>

Its context parameters are:

<context-param>
 <param-name>deploymentType</param-name>
 <param-value>SERVER_PROTOTYPE</param-value>
</context-param>
<context-param>
 <param-name>isis.viewers</param-name>
 <param-value>restfulobjects</param-value>
</context-param>

9.1.3. ResteasyBootstrap (RestEasy)

The ResteasyBootstrap servlet context listener initializes the RestEasy runtime, specifying that
classes (namely, those specified in Isis' RestfulObjectsApplication) to be exposed as REST resources.
It is required if the Restful Objects viewer is to be deployed.

Its definition is:

<listener>
 <listener-class>
org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap</listener-class>
</listener>

There are two relevant context parameters:

<context-param>
 <param-name>javax.ws.rs.Application</param-name> ①
 <param-
value>org.apache.isis.viewer.restfulobjects.server.RestfulObjectsApplication</param-
value>
</context-param>
<context-param>
 <param-name>resteasy.servlet.mapping.prefix</param-name>
 <param-value>/restful/</param-value> ②
</context-param>

① used by RestEasy to determine the JAX-RS resources and other related configuration

② should correspond to the filter mapping of the HttpServletDispatcher servlet

70

9.2. Servlets
Servlets process HTTP requests and return corresponding responses.

9.2.1. HttpServletDispatcher (RestEasy)

This servlet is provided by the RestEasy framework, and does the dispatching to the resources
defined by Apache Isis' RestfulObjectsApplication (see above).

Its definition is:

<servlet>
 <servlet-name>RestfulObjectsRestEasyDispatcher</servlet-name>
 <servlet-class>
org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher</servlet-class>
</servlet>

Its mapping is:

<servlet-mapping>
 <servlet-name>RestfulObjectsRestEasyDispatcher</servlet-name>
 <url-pattern>/restful/*</url-pattern>
</servlet-mapping>

9.2.2. ResourceServlet

The ResourceServlet loads and services static content either from the filesystem or from the
classpath, each with an appropriate mime type.

Static content here means request paths ending in .js, .css, .html, .png, .jpg, .jpeg and gif.

Its definition is:

<servlet>
 <servlet-name>Resource</servlet-name>
 <servlet-class>org.apache.isis.core.webapp.content.ResourceServlet</servlet-class>
</servlet>

Its mapping is:

71

<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>*.css</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>*.png</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>*.jpg</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>*.gif</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>*.js</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>*.swf</url-pattern>
</servlet-mapping>

9.3. Filters
The order in which filters appear in web.xml matters: first to last they define a pipeline. This is
shown in the above diagrams, and the subsections also list the in the same order that they should
appear in your web.xml.

9.3.1. ShiroFilter (Shiro)

Shiro filter that sets up a Shiro security manager for the request, obtained from the Shiro
WebEnvironment set up by the Shiro EnvironmentLoaderListener (discussed above).

Its definition is:

<filter>
 <filter-name>ShiroFilter</filter-name>
 <filter-class>org.apache.shiro.web.servlet.ShiroFilter</filter-class>
</filter>

72

Its mapping is:

<filter-mapping>
 <filter-name>ShiroFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

9.3.2. IsisLogOnExceptionFilter

The IsisLogOnExceptionFilter filter simply logs the URL of any request that causes an exception to
be thrown, then re-propagates the exception. The use case is simply to ensure that all exceptions
are logged (against the IsisLogOnExceptionFilter slf4j appender).

Its definition is:

<filter>
 <filter-name>IsisLogOnExceptionFilter</filter-name>
 <filter-class>
org.apache.isis.core.webapp.diagnostics.IsisLogOnExceptionFilter</filter-class>
</filter>

Its mapping is:

<filter-mapping>
 <filter-name>IsisLogOnExceptionFilter</filter-name>
 <url-pattern>/wicket/*</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>IsisLogOnExceptionFilter</filter-name>
 <url-pattern>/restful/*</url-pattern>
</filter-mapping>

9.3.3. ResourceCachingFilter

The ResourceCachingFilter adds HTTP cache headers to specified resources, based on their pattern.

Its definition is:

73

<filter>
 <filter-name>ResourceCachingFilter</filter-name>
 <filter-class>org.apache.isis.core.webapp.content.ResourceCachingFilter</filter-
class>
 <init-param>
 <param-name>CacheTime</param-name> ①
 <param-value>86400</param-value>
 </init-param>
</filter>

① cache time, in seconds

Its mapping is:

<filter-mapping>
 <filter-name>ResourceCachingFilter</filter-name>
 <url-pattern>*.js</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>ResourceCachingFilter</filter-name>
 <url-pattern>*.css</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>ResourceCachingFilter</filter-name>
 <url-pattern>*.png</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>ResourceCachingFilter</filter-name>
 <url-pattern>*.jpg</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>ResourceCachingFilter</filter-name>
 <url-pattern>*.gif</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>ResourceCachingFilter</filter-name>
 <url-pattern>*.html</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>ResourceCachingFilter</filter-name>
 <url-pattern>*.swf</url-pattern>
</filter-mapping>

9.3.4. WicketFilter

The WicketFilter is responsible for initiating the handling of Wicket requests.

Its definition is:

74

<filter>
 <filter-name>WicketFilter</filter-name>
 <filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>
 <init-param>
 <param-name>applicationClassName</param-name> ①
 <param-value>domainapp.webapp.SimpleApplication</param-value>
 </init-param>
</filter>

① specify the application (subclass of IsisWicketApplication) to use

Its mapping is:

<filter-mapping>
 <filter-name>WicketFilter</filter-name>
 <url-pattern>/wicket/*</url-pattern>
</filter-mapping>

This filter reads one context parameter:

<context-param>
 <param-name>configuration</param-name>
 <param-value>deployment</param-value> ①
</context-param>

① alternatively set to "development"; see deployment types for further discussion.

9.3.5. IsisSessionFilter

The IsisSessionFilter is responsible for the (persistence) session management; in effect a wrapper
around DataNucleus' PersistenceManager object. It is only required for the Restful Objects viewer.

75

rgcfg.pdf#_rgcfg_deployment-types

<filter>
 <filter-name>IsisSessionFilterForRestfulObjects</filter-name>
 <filter-class>org.apache.isis.core.webapp.IsisSessionFilter</filter-class>
 <init-param>
 <param-name>authenticationSessionStrategy</param-name> ①
 <param-value>

org.apache.isis.viewer.restfulobjects.server.authentication.AuthenticationSessionStrat
egyBasicAuth
 </param-value>
 </init-param>
 <init-param>
 <param-name>whenNoSession</param-name> ②
 <param-value>basicAuthChallenge</param-value>
 </init-param>
 <init-param>
 <param-name>passThru</param-name> ③
 <param-value>/restful/swagger</param-value>
 </init-param>
 <!--
 <init-param>
 <param-name>restricted</param-name> ④
 <param-value>...</param-value>
 </init-param>
 <init-param>
 <param-name>redirectToOnException</param-name> ⑤
 <param-value>...</param-value>
 </init-param>
 -->
</filter>

① pluggable strategy for determining what the authentication session (credentials) are of the
request

② what the servlet should do if no existing session was found. Usual values are either
unauthorized, basicAuthChallenge or auto. Discussed in more detail below.

③ specify which URIs to ignore and simply passthru. Originally introduced to allow the
SwaggerSpec resource (which does not require a session) to be invoked.

④ List of paths that are allowed through even if not authenticated. The servlets mapped to these
paths are expected to be able to deal with there being no session. Typically they will be logon
pages. See below for further details.

⑤ where to redirect to if an exception occurs.

The whenNoSession parameter determines what the behaviour should be if no existing session can be
found. There are a number of predetermined values available:

• unauthorized will generates a 401 response

• basicAuthChallenge will also generate a 401 response, and also issues a Basic Auth challenge

76

using WWW-Authenticate response header

• auto combines the unauthorized and basicAuthChallenge strategies: it will generate a 401
response, but only issues a Basic Auth challenge if it detects that the request originates from a
web browser (ie that the HTTP Accept header is set to text/html). This means that custom
Javascript apps can perform their authentication correctly, while the REST API can still be
explored using the web browser (relying upon the web browser’s in-built support for HTTP
Basic Auth).

• continue, in which case the request is allowed to continue but the destination expected to know
that there will be no open session

• restricted, which allows access to a restricted list of URLs, otherwise will redirect to the first of
that list of URLs

If accessing the REST API through a web browser, then normally basicAuthChallenge is appropriate;
the browser will automatically display a simple prompt. If accessing the REST API through a
custom Javascript app, then unauthorized is usually the one to use.

This filter should be mapped to the servlet-name for the RestEasy HttpServletDispatcher; for
example:

<filter-mapping>
 <filter-name>IsisSessionFilterForRestfulObjects</filter-name>
 <servlet-name>RestfulObjectsRestEasyDispatcher</servlet-name>
</filter-mapping>

9.3.6. IsisTransactionFilterForRestfulObjects

The IsisTransactionFilterForRestfulObjects filter simply ensures that a transaction is in progress
for all calls routed to the RestfulObjects viewer.

Its definition is:

<filter>
 <filter-name>IsisTransactionFilterForRestfulObjects</filter-name>
 <filter-
class>org.apache.isis.viewer.restfulobjects.server.webapp.IsisTransactionFilterForRest
fulObjects</filter-class>
</filter>

This filter should be mapped to the servlet-name for the RestEasy HttpServletDispatcher; for
example:

<filter-mapping>
 <filter-name>IsisTransactionFilterForRestfulObjects</filter-name>
 <servlet-name>RestfulObjectsRestEasyDispatcher</servlet-name>
</filter-mapping>

77

ugvro.pdf

9.4. Configuration Files
However Apache Isis is bootstrapped (using the IsisWicketApplication or using
IsisWebAppBootstrapper), it will read a number of configuration files, such as isis.properties.

By default these are read from WEB-INF directory. This can be overriden using the isis.config.dir
context parameter:

<context-param>
 <param-name>isis.config.dir</param-name>
 <param-value>location of your config directory if fixed</param-value>
</context-param>

Another context parameter, isis.viewres specifies which additional configuration files to search for
(over and above the default ones of isis.properties et al):

<context-param>
 <param-name>isis.viewers</param-name>
 <param-value>wicket,restfulobjects</param-value>
</context-param>

For example, this will cause viewer_wicket.properties and viewer_restfulobjects.properties to also
be loaded.

78

	Beyond the Basics
	Table of Contents
	Chapter 1. Beyond the Basics
	1.1. Other Guides

	Chapter 2. View Models
	2.1. Use Cases
	2.2. Programming Model
	2.3. JAXB-annotated DTOs

	Chapter 3. Decoupling
	3.1. Database Schemas
	3.2. Mixins
	3.3. Contributions
	3.4. Vetoing Visibility
	3.5. Event Bus
	3.6. Pushing Changes

	Chapter 4. i18n
	4.1. Implementation Approach
	4.2. TranslationService
	4.3. Imperative messages
	4.4. Wicket Viewer
	4.5. Integration Testing
	4.6. Escaped strings
	4.7. Configuration
	4.8. Supporting services

	Chapter 5. Headless access
	5.1. AbstractIsisSessionTemplate
	5.2. BackgroundCommandExecution

	Chapter 6. Other Techniques
	6.1. Overriding JDO Annotations
	6.2. Mapping RDBMS Views
	6.3. Transactions and Errors
	6.4. Multi-tenancy
	6.5. Persisted Title
	6.6. Replacing Service Implns

	Chapter 7. Customizing the Prog Model
	7.1. Custom validator
	7.2. Finetuning
	7.3. Layout Metadata Reader

	Chapter 8. Deployment
	8.1. Command Line (WebServer)
	8.2. Deploying to Tomcat
	8.3. Externalized Configuration
	8.4. Deploying to Google App Engine
	8.5. Neo4J
	8.6. JVM Flags

	Chapter 9. web.xml
	9.1. Servlet Context Listeners
	9.2. Servlets
	9.3. Filters
	9.4. Configuration Files

