
Developers' Guide

Table of Contents
1. Developers' Guide . 1

1.1. Other Guides . 1

2. Using an IDE . 2

2.1. Developing using IntelliJ IDEA . 2

2.2. Developing using Eclipse . 32

3. Code and File Templates . 38

3.1. Download . 38

3.2. Installation. 38

3.3. Usage . 39

4. Building Apache Isis . 40

4.1. Git . 40

4.2. Installing Java . 42

4.3. Installing Maven. 43

4.4. Building all of Apache Isis . 44

4.5. Checking for Vulnerabilities . 44

4.6. Checking for use of internal JDK APIs . 44

5. AsciiDoc Documentation . 46

5.1. Where to find the Docs . 46

5.2. Naming Conventions . 46

5.3. Writing the docs . 47

5.4. Build and Review (using Maven) . 47

5.5. Instant Rebuild (using Ruby) . 47

5.6. Publish procedure . 48

6. Contributing . 50

6.1. Recommended Workflow (github) . 50

6.2. Alternative Workflow (JIRA patches) . 51

6.3. Setting up your fork/clone . 52

6.4. Commit messages . 52

6.5. Creating the patch file . 53

6.6. Sample Contribution Workflow . 53

6.7. If your pull request is accepted . 55

7. Appendix: Git Cookbook. 57

7.1. Modifying existing files . 57

7.2. Adding new files . 57

7.3. Deleting files . 57

7.4. Renaming or moving files . 58

7.5. Common Workflows . 58

7.6. Backing up a local branch . 58

7.7. Quick change: stashing changes . 58

7.8. Ignoring files . 59

7.9. More advanced use cases . 59

7.10. If you’ve accidentally worked on master branch . 60

7.11. If you’ve forgotten to prefix your commits (but not pushed) . 60

8. Appendix: Asciidoc Templates . 62

8.1. Callouts . 62

8.2. TODO notes . 62

8.3. Xref to Guides . 62

8.4. Link to Isis Addons. 77

8.5. Source code . 78

8.6. Images . 78

8.7. YouTube (screencasts) . 79

8.8. Tables . 79

8.9. Misc.. 79

9. Appendix: Project Lombok . 81

9.1. Future thoughts . 81

10. Appendix: AgileJ . 82

Chapter 1. Developers' Guide
This developers' guide is for:

• programmers who want to just use Apache Isis to build applications, and want help setting up
their development environment or to build their code from the command line (eg to execute
within a continuous integration server such as Jenkins)

• programmers who want to contribute back patches (bug fixes, new features) either to the
codebase or the framework’s documentation

• committers of Apache Isis itself who want guidance on release process, publishing documents
and other related procedures.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin

The remaining guides are:

• Developers' Guide (this guide)

• Committers' Guide (release procedures and related practices)

1

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgsvc.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
cgcom.pdf

Chapter 2. Using an IDE
The vast majority of Java developers use an IDE to assist with developing their code, and we highly
recommend that you do like wise as you develop your Apache Isis applications using an IDE.
Apache Isis is built with Maven, and all modern IDEs can import Maven projects.

This chapter shows how to setup and use two of the most popular IDEs, IntelliJ IDEA and Eclipse.

2.1. Developing using IntelliJ IDEA


This material does not constitute an endorsement; JetBrains is not affiliated to
Apache Software Foundation in any way.

This section describes how to install and setup JetBrains' IntelliJ IDEA, then how to import an
application into IntelliJ and run it.

2.1.1. Installing and Setting up

This section covers installation and setup. These notes relates to IntelliJ Community Edition 14.1.x,
with screenshots taken for Windows.

Download and Install

Download latest version of IntelliJ Community Edition, and install:

Start the wizard, click through the welcome page:

Figure 1. IntelliJ Installation Wizard - Welcome page

Choose the location to install the IDE:

2

https://www.jetbrains.com/idea/download/

Figure 2. IntelliJ Installation Wizard - Choose Location

Adjust any installation options as you prefer:

Figure 3. IntelliJ Installation Wizard - Installation Options

and the start menu:

3

Figure 4. IntelliJ Installation Wizard - Start Menu Folder

and finish up the wizard:

Figure 5. IntelliJ Installation Wizard - Completing the Wizard

Later on we’ll specify the Apache Isis/ASF code style settings, so for now select I do not want to
import settings:

4

Figure 6. IntelliJ Installation Wizard - Import Settings

Finally, if you are young and trendy, set the UI theme to Darcula:

Figure 7. IntelliJ Installation Wizard Set UI Theme

New Project

In IntelliJ a project can contain multiple modules; these need not be physically located together. (If
you are previously an Eclipse user, you can think of it as similar to an Eclipse workspace).

Start off by creating a new project:

5

Figure 8. IntelliJ Create New Project

We want to create a new Java project:

Figure 9. IntelliJ Create New Project - Create a Java project

We therefore need to specify the JDK.

6


at the time of writing Apache Isis supports only Java 7; Java 8 is scheduled for
support in Apache Isis v1.9.0

Figure 10. IntelliJ Create New Java Project - Select the JDK

Specify the directory containing the JDK:

Figure 11. IntelliJ Create New Project - Select the JDK location

Finally allow IntelliJ to create the directory for the new project:

7

Figure 12. IntelliJ Create New Project

Import Settings

Next we need to configure IntelliJ with ASF/Apache Isis' standard templates and coding
conventions. These are bundled as the settings.jar JAR file download from the Apache Isis
website).

Import using: File > Import Settings, and specify the directory that you have downloaded the file
to:

Figure 13. IntelliJ Import Settings - Specify JAR file

Select all the (two) categories of settings available in the JAR file:

Figure 14. IntelliJ Import Settings - Select all categories

And then restart:

8

resources/appendices/dev-env/intellij/isis-settings.jar
resources/appendices/dev-env/intellij/isis-settings.jar

Figure 15. IntelliJ Import Settings - Restart

Other Settings (Compiler)

There are also some other settings that influence the compiler. We highly recommend you set
these.

On the Compiler Settings page, ensure that build automatically is enabled (and optionally compile
independent modules in parallel):

Figure 16. IntelliJ Compiler Settings

On the Annotation Processors page, enable and adjust for the 'default' setting:

9

Figure 17. IntelliJ Annotation Processor Settings

This setting enables the generation of the Q* classes for DataNucleus type-safe queries, as well as
being required for frameworks such as Project Lombok.


IntelliJ may also have inferred these settings for specific projects/modules when
importing; review the list on the left to see if the default is overridden and
fix/delete as required.

Other Settings (Maven)

There are also some other settings for Maven that we recommend you adjust (though these are less
critical):

First, specify an up-to-date Maven installation, using File > Settings (or IntelliJ > Preferences if
on MacOS):

10

Figure 18. IntelliJ Maven Settings - Installation

Still on the Maven settings page, configure as follows:

11

Figure 19. IntelliJ Maven Settings - Configuration

Other Settings (Misc)

These settings are optional but also recommended.

On the auto import page, check the optimize imports on the fly and add unambiguous imports on
the fly

12

Figure 20. IntelliJ Maven Settings - Auto Import

2.1.2. Importing Maven Modules

Let’s load in some actual code! We do this by importing the Maven modules.

First up, open up the Maven tool window (View > Tool Windows > Maven Projects). You can then use
the 'plus' button to add Maven modules. In the screenshot you can see we’ve loaded in Apache Isis
core; the modules are listed in the Maven Projects window and corresponding (IntelliJ) modules are
shown in the Projects window:

13

Figure 21. IntelliJ Maven Module Management - Importing Maven modules

We can then import another module (from some other directory). For example, here we are
importing the Isis Addons' todoapp example:

Figure 22. IntelliJ Maven Module Management - Importing another Module

You should then see the new Maven module loaded in the Projects window and also the Maven

14

Projects window:

Figure 23. IntelliJ Maven Module Management -

If any dependencies are already loaded in the project, then IntelliJ will automatically update the
CLASSPATH to resolve to locally held modules (rather from .m2/repository folder). So, for example
(assuming that the <version> is correct, of course), the Isis todoapp will have local dependencies on
the Apache Isis core.

You can press F4 (or use File > Project Structure) to see the resolved classpath for any of the
modules loaded into the project.

If you want to focus on one set of code (eg the Isis todoapp but not Apache Isis core) then you could
remove the module; but better is to ignore those modules. This will remove from the the Projects
window but keep them available in the Maven Projects window for when you next want to work on
them:

15

Figure 24. IntelliJ Maven Module Management - Ignoring Modules

Confirm that it’s ok to ignore these modules:

Figure 25. IntelliJ Maven Module Management - Ignoring Modules (ctd)

All being well you should see that the Projects window now only contains the code you are working
on. Its classpath dependencies will be adjusted (eg to resolve to Apache Isis core from
.m2/repository):

16

Figure 26. IntelliJ Maven Module Management - Updated Projects Window

2.1.3. Running

Let’s see how to run both the app and the tests.

Running the App

Once you’ve imported your Isis application, we should run it. We do this by creating a Run
configuration, using Run > Edit Configurations.

Set up the details as follows:

17

Figure 27. IntelliJ Running the App - Run Configuration

We specify the Main class to be org.apache.isis.WebServer; this is a wrapper around Jetty. It’s
possible to pass program arguments to this (eg to automatically install fixtures), but for now leave
this blank.

Also note that Use classpath of module is the webapp module for your app, and that the working
directory is $MODULE_DIR$.

Next, and most importantly, configure the DataNucleus enhancer to run for your dom goal. This can
be done by defining a Maven goal to run before the app:

Figure 28. IntelliJ Running the App - Datanucleus Enhancer Goal

The -o flag in the goal means run off-line; this will run faster.


if you forget to set up the enhancer goal, or don’t run it on the correct (dom)
module, then you will get all sorts of errors when you startup. These usually
manifest themselves as class cast exception in DataNucleus.

You should now be able to run the app using Run > Run Configuration. The same configuration can
also be used to debug the app if you so need.

18

Running the Unit Tests

The easiest way to run the unit tests is just to right click on the dom module in the Project Window,
and choose run unit tests. Hopefully your tests will pass (!).

Figure 29. IntelliJ Running the App - Unit Tests Run Configuration

As a side-effect, this will create a run configuration, very similar to the one we manually created for
the main app:

19

Figure 30. IntelliJ Running the App - Unit Tests Run Configuration

Thereafter, you should run units by selecting this configuration (if you use the right click approach
you’ll end up with lots of run configurations, all similar).

Running the Integration Tests

Integration tests can be run in the same way as unit tests, however the dom module must also have
been enhanced.

One approach is to initially run the tests use the right click on the integtests module; the tests will
fail because the code won’t have been enhanced, but we can then go and update the run
configuration to run the datanucleus enhancer goal (same as when running the application):

20

Figure 31. IntelliJ Running the App - Integration Tests Run Configuration

2.1.4. Hints and Tips

Keyboard Cheat Sheets

You can download 1-page PDFs cheat sheets for IntelliJ’s keyboard shortcuts: * for Windows * for
MacOS

Probably the most important shortcut on them is for Find Action: - ctrl-shift-A on Windows - cmd-
shift-A on MacOS.

This will let you search for any action just by typing its name.

Switch between Tools & Editors

The Tool Windows are the views around the editor (to left, bottom and right). It’s possible to move
these around to your preferred locations.

• Use alt-1 through alt-9 (or cmd-1 through alt-9) to select the tool windows

• Press it twice and the tool window will hide itself; so can use to toggle

• If in the Project Window (say) and hit enter on a file, then it will be shown in the editor, but
(conveniently) the focus remains in the tool window. To switch to the editor, just press Esc.

• If in the Terminal Window, you’ll need to press Shift-Esc.

• If on the editor and want to locate the file in (say) the Project Window, use alt-F1.

• To change the size of any tool window, use ctrl-shift-arrow

21

https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard_Mac.pdf

Using these shortcuts you can easily toggle between the tool windows and the editor, without using
the mouse. Peachy!

Navigating Around

For all of the following, you don’t need to type every letter, typing "ab" will actually search for
".a.*b.".

• to open classes or files or methods that you know the name of:

• ctrl-N to open class

• ctrl-shift-N to open a file

• (bit fiddly this) ctrl-shift-alt-N to search for any symbol.

• open up dialog of recent files: ctrl-E

• search for any file: shift-shift

Navigating around: * find callers of a method (the call hierarchy): ctrl-alt-H * find subclasses or
overrides: ctrl-alt-B * find superclasses/interface/declaration: ctrl-B

Viewing the structure (ie outline) of a class * ctrl-F12 will pop-up a dialog showing all members **
hit ctrl-F12 again to also see inherited members

Editing

• Extend selection using ctrl-W

• and contract it down again using ctrl-shift-W

• to duplicate a line, it’s ctrl-D

• if you have some text selected (or even some lines), it’ll actually duplicate the entire
selection

• to delete a line, it’s ctrl-X

• to move a line up or down: shift-alt-up and shift-alt-down

• if you have selected several lines, it’ll move them all togethe

• ctrl-shift-J can be handy for joining lines together

• just hit enter to split them apart (even in string quotes; IntelliJ will "do the right thing")

Intentions and Code Completion

Massively useful is the "Intentions" popup; IntelliJ tries to guess what you might want to do. You
can activate this using`alt-enter`, whenever you see a lightbulb/tooltip in the margin of the current
line.

Code completion usually happens whenever you type '.'. You can also use ctrl-space to bring these
up.

22

In certain circumstances (eg in methods0) you can also type ctrl-shift-space to get a smart list of
methods etc that you might want to call. Can be useful.

Last, when invoking a method, use ctrl-P to see the parameter types.

Refactoring

Loads of good stuff on the Refactor menu; most used are:

• Rename (shift-F6)

• Extract

• method: ctrl-alt-M

• variable: ctrl-alt-V

• Inline method/variable: ctrl-alt-N

• Change signature

If you can’t remember all those shortcuts, just use ctrl-shift-alt-T (might want to rebind that to
something else!) and get a context-sensitive list of refactorings available for the currently selected
object

Plugins

You might want to set up some additional plugins. You can do this using File > Settings > Plugins
(or equivalently File > Other Settings > Configure Plugins).

Recommended are:

• Maven Helper plugin

More on this below.

• AsciiDoctor plugin

Useful if you are doing any authoring of documents.

Some others you might like to explore are:

23

https://plugins.jetbrains.com/plugin/7179?pr=idea
https://github.com/asciidoctor/asciidoctor-intellij-plugin

Figure 32. IntelliJ Plugins

Maven Helper Plugin

This plugin provides a couple of great features. One is better visualization of dependency trees
(similar to Eclipse).

If you open a pom.xml file, you’ll see an additional "Dependencies" tab:

24

Clicking on this gives a graphical tree representation of the dependencies, similar to that obtained
by mvn dependency:tree, but filterable.

The plugin also provides the ability to easily run a Maven goal on a project:

25

images/appendices/dev-env/intellij-idea/050-some-plugins/maven-helper/010-dependency-tab.png
images/appendices/dev-env/intellij-idea/050-some-plugins/maven-helper/020-dependency-as-tree.png

This menu can also be bound to a keystroke so that it is available as a pop-up:

26

images/appendices/dev-env/intellij-idea/050-some-plugins/maven-helper/030-maven-run-goal.png

Troubleshooting

When a Maven module is imported, IntelliJ generates its own project files (suffix .ipr), and the
application is actually built from that.

Occasionally these don’t keep in sync (even if auto-import of Maven modules has been enabled).

To fix the issue, try: * reimport module * rebuild selected modules/entire project * remove and then
re-add the project * restart, invalidating caches * hit StackOverflow (!)

One thing worth knowing; IntelliJ actively scans the filesystem all the time. It’s therefore (almost
always) fine to build the app from the Maven command line; IntelliJ will detect the changes and
keep in sync. If you want to force that, use File > Synchronize, ctrl-alt-Y.

If you hit an error of "duplicate classes":

27

images/appendices/dev-env/intellij-idea/050-some-plugins/maven-helper/040-maven-quick-run.png

then make sure you have correctly configured the annotation processor settings. Pay attention in
particular to the "Production sources directory" and "Test sources directory", that these are set up
correctly.

2.1.5. Running Integration Tests

When running integration tests from within IntelliJ, make sure that the search for tests radio
button is set to In single module:

28

images/appendices/dev-env/intellij-idea/060-troubleshooting/010-duplicate-classes.png
images/appendices/dev-env/intellij-idea/400-running-integtests/run-debug-configuration-single-module.png

If this radio button is set to one of the other options then you may obtain class loading issues; these
result from IntelliJ attempting to run unit tests of the dom project that depend on test classes in that
module, but using the classpath of the integtests module whereby the dom test-classes (test-jar
artifact) are not exposed on the Maven classpath.

2.1.6. Advanced

In this section are a couple of options that will reduce the length of the change
code/build/deploy/review feedback loop.

Setting up Dynamic Reloading

DCEVM enhances the JVM with true hot-swap adding/removing of methods as well as more reliable
hot swapping of the implementation of existing methods.

In the context of Apache Isis, this is very useful for contributed actions and mixins and also view
models; you should then be able to write these actions and have them be picked up without
restarting the application.

Changing persisting domain entities is more problematic, for two reasons: the JDO/DataNucleus
enhancer needs to run on domain entities, and also at runtime JDO/DataNucleus would need to
rebuild its own metamodel. You may find that adding actions will work, but adding new properties
or collections is much less likely to.

To set up DCEVM, download the appropriate JAR from the github page, and run the installer. For
example:

java -jar DCEVM-light-8u51-installer.jar


Be sure to run with appropriate privileges to be able to write to the installation
directories of the JDK. If running on Windows, that means running as
Administrator.

After a few seconds this will display a dialog listing all installations of JDK that have been found:

29

github.com/dcevm/dcevm
https://dcevm.github.io/

Select the corresponding installation, and select Replace by DCEVM.

In IntelliJ, register the JDK in File > Project Structure dialog:

30

images/appendices/dev-env/intellij-idea/070-advanced/010-dcevm-list-of-found-jdk-installations.png
images/appendices/dev-env/intellij-idea/070-advanced/020-dcevm-once-installed.png

Finally, in the run configuration, select the patched JDK:

Setting up JRebel

See the repo for the (non-ASF) Isis JRebel plugin. With some modification, this should work for
IntelliJ too.

Note that JRebel is a commercial product, requiring a license. At the time of writing there is also

31

images/appendices/dev-env/intellij-idea/070-advanced/030-dcevm-intellij-project-structure.png
images/appendices/dev-env/intellij-idea/070-advanced/040-dcevm-run-configuration.png
https://github.com/isisaddons/isis-jrebel-plugin

currently a non-commercial free license (though note this comes with some usage conditions).

2.2. Developing using Eclipse


This material does not constitute an endorsement; Eclipse foundation is not
affiliated to Apache Software Foundation in any way.

If you are an Eclipse user, then we recommend you download the "Eclipse JEE package"
configuration.

When running an Apache Isis application, it’s necessary to setup the development environment so
that the Java bytecode can be enhanced by the DataNucleus enhancer. If working in Eclipse, then
JDO enhancement is most easily done by installing the DataNucleus' Eclipse plugin. This hooks the
bytecode enhancement of your domain objects into Eclipse’s normal incremental compilation.

This plugin needs to be configured for each of your domain modules (usually just one in any given
app). The steps are therefore:

• import the project into Eclipse

• configure the DataNucleus enhancer

• run the app from the .launch file

2.2.1. Screencast

This screencast shows how to import an Apache Isis maven-based application into Eclipse and
configure to use with the JDO Objectstore.

2.2.2. Importing the Project

Use File > Import, then Maven > Existing Maven Projects.

2.2.3. Add DataNucleus support

 Make sure you are in the 'Java' Perspective, not the 'Java EE' Perspective.

In Eclipse, for the domain object model project, first add DataNucleus support:

32

http://www.eclipse.org
http://www.datanucleus.org
http://www.datanucleus.org/products/datanucleus/jdo/guides/eclipse.html
https://www.youtube.com/watch?v=RgcYfjQ8yJA

Then turn on Auto-Enhancement:

33

images/appendices/dev-env/eclipse/eclipse-100-project-support.png
images/appendices/dev-env/eclipse/eclipse-110-project-support.png

Update the classpath

DataNucleus' enhancer uses the domain object model’s own classpath to reference DataNucleus
JARs. So, even though your domain objects are unlikely to depend on DataNucleus, these references
must still be present.

See the earlier section on DataNucleus enhancer for details of the contents of the pom.xml. Chances
are it is already set up from running the SimpleApp archetype.

Then, tell DataNucleus to use the project classpath:

When the enhancer runs, it will print out to the console:

Workaround for path limits (the DN plugin to use the persistence.xml)

If running on Windows then the DataNucleus plugin is very likely to hit the Windows path limit.

To fix this, we configure the enhancer to read from the persistence.xml file.

34

ugfun.pdf#_ugfun_getting-started_datanucleus-enhancer
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
images//appendices/dev-env/eclipse/eclipse-010-windows-preferences.png
images//appendices/dev-env/eclipse/eclipse-120-console.png

As a prerequisite, first make sure that your domain object model has a persistence.xml file. Then
specify the persistence-unit in the project properties:

Workaround: If the enhancer fails

On occasion it appears that Eclipse can attempt to run two instances of the DataNucleus enhancer.
This is probably due to multiple Eclipse builders being defined; we’ve noticed multiple entries in
the Eclipse’s Debug view:

At any rate, you’ll know you’ve encountered this error if you see the following in the console:

35

images//appendices/dev-env/eclipse/eclipse-025-project-properties.png
images//appendices/dev-env/eclipse/eclipse-210-enhancer-fails-duplicates.png

The best solution is to remove DataNucleus support and then to re-add it:

If you consistently hit problems, then the final recourse is to disable the automatic enhancement
and to remember to manually enhance your domain object model before each run.

Not ideal, we know. Please feel free to contribute a better solution :-)

36

images//appendices/dev-env/eclipse/eclipse-200-enhancer-fails-duplicates.png
images//appendices/dev-env/eclipse/eclipse-220-enhancer-fails-duplicates.png

2.2.4. Running the App

The simpleapp archetype automatically provides a .launch configurations in the webapp module. You
can therefore very simply run the application by right-clicking on one of these files, and choosing
"Run As…" or "Debug As…".

 The screencast above shows this in action.

2.2.5. Other domain projects.

There is nothing to prevent you having multiple domain projects. You might want to do such that
each domain project corresponds to a DDD module, thus guaranteeing that there are no cyclic
dependencies between your modules.

If you do this, make sure that each project has its own persistence.xml file.

And, remember also to configure Eclipse’s DataNucleus plugin for these other domain projects.

2.2.6. Advanced

In this section are a couple of options that will reduce the length of the change
code/build/deploy/review feedback loop.

Setting up Dynamic Reloading

DCEVM enhances the JVM with true hot-swap adding/removing of methods as well as more reliable
hot swapping of the implementation of existing methods.

In the context of Apache Isis, this is very useful for contributed actions and mixins and also view
models; you should then be able to write these actions and have them be picked up without
restarting the application.

Changing persisting domain entities is more problematic, for two reasons: the JDO/DataNucleus
enhancer needs to run on domain entities, and also at runtime JDO/DataNucleus would need to
rebuild its own metamodel. You may find that adding actions will work, but adding new properties
or collections is much less likely to.

For details of setting up DCEVM, see the corresponding section in the IntelliJ documentation.

37

http://www.methodsandtools.com/archive/archive.php?id=97p2
github.com/dcevm/dcevm

Chapter 3. Code and File Templates
We provide parameterized templates, for both IntelliJ and Eclipse, to help you write your domain
applications.

On IntelliJ we provide both file templates (File > Settings > Editor > File and Code Templates)
and also live templates (File > Settings > Editor > Live Templates). The former are used to create
new classes or files (eg a new domain entity), while the latter are intended to modify an existing file
(eg create a new property or add a toString() method etc).

On Eclipse we provide only the latter sort of template (Windows > Preferences > Java > Editor >
Templates).

There are templates for writing Apache Isis domain objects, for writing unit tests (JUnit and JMock),
and also for writing Asciidoc documentation (see also the appendix).

3.1. Download
The following table lists the templates available to download:

Purpose IntelliJ
file template

Prefix IntelliJ
live template

Eclipse
template

Domain Objects Download is Download Download

JUnit tests (none) ju Download Download

JMock tests (none) jm Download Download

Asciidoc (none) ad Download (none)

The most commonly used domain objects (live) templates are also listed on the Apache Isis cheat
sheet.

3.2. Installation

3.2.1. IntelliJ

To install in the live templates IntelliJ (Community edition 15), copy to the relevant config/templates
directory, eg:

• Windows <User home>\.IdeaIC15\config\templates

• Linux ~/.IdeaIC15/config/templates

• Mac OS ~/Library/Preferences/IdeaIC15/templates

If using the Ultimate edition, the directory is .IntelliJIdea15 rather than IdeaIC15.

To install the file templates, use File > Import Settings.

38

../resources/templates/intellij-settings-file-templates-for-apache-isis.jar
../resources/templates/isis-templates-idea.xml
../resources/templates/isis-templates.xml
../resources/templates/junit4-templates-idea.xml
../resources/templates/junit4-templates.xml
../resources/templates/jmock2-templates-idea.xml
../resources/templates/jmock2-templates.xml
../resources/templates/isis-asciidoc-templates-idea.xml
../cheat-sheet.html
../cheat-sheet.html

3.2.2. Eclipse

To install in Eclipse, go to Windows > Preferences > Java > Editor > Templates and choose Import.

3.3. Usage
For the live templates, enter the prefix in the editor (is, ju, jm) and the IDE will list all available
templates in that category.

For the file templates (IntelliJ only), these are available from File > New.

39

Chapter 4. Building Apache Isis

4.1. Git
The Apache Isis source code lives in a git repo.

4.1.1. Installation

The easiest place to get hold of command-line git is probably the github download page.

On Windows, this also installs the rather good mSysGit Unix shell. We recommend that you enable
git for both the mSysgit and the Windows command prompt:

Once git is installed, the two main command line tools to note are:

• git command line tool

• gitk for viewing the commit history

If using Windows, note that github also have a dedicated Windows client. With a little hacking
around, it can also be made to work with non-github repositories.

If using Mac, you might also want to check out Atlassian’s Sourcetree.

Cloning the Apache Isis repo

First, clone the Apache Isis repo.

If you are a committer, then clone from the Apache read/write repo:

git clone https://git-wip-us.apache.org/repos/asf/isis.git

If you are not a committer, please see the contributing page for details on which repo to clone
from.

40

http://git-scm.com/downloads
images/building-isis/setting-up-git.png
https://help.github.com/articles/set-up-git
http://haacked.com/archive/2012/05/30/using-github-for-windows-with-non-github-repositories.aspx
http://haacked.com/archive/2012/05/30/using-github-for-windows-with-non-github-repositories.aspx
http://www.atlassian.com/software/sourcetree/overview

Configuring Git

Next up is to configure your user name and password; see also Apache’s git docs:

git config user.name "<i>My Name Here</i>"
git config user.email <i>myusername@apache.org</i>

Next, configure the core.autocrlf so that line endings are normalized to LF (Unix style) in the rep;
again see Apache’s git page:

• on Windows, use:

git config core.autocrlf true

• on Mac/Linux, use:

git config core.autocrlf input

The Windows setting means that files are converted back to CRLF on checkout; the Mac/Linux
setting means that the file is left as LF on checkout.

We also recommend setting core.safecrlf, which aims to ensure that any line ending conversion is
repeatable. Do this on all platforms:

git config core.safecrlf true

Note that these settings are supplemented in the repo by the .gitattributes file and that explicitly
specifies line handling treatment for most of the common file types that we have.

Next, we recommend you setup this a refspec so that you can distinguish remote tags from local
ones. To do that, locate the [remote "origin"] section in your .git/config and add the third entry
shown below:

[remote "origin"]
 url = ... whatever ...
 fetch = ... whatever ...
 fetch = +refs/tags/*:refs/tags/origin/*

This will ensure that a git fetch or git pull places any remote tags under origin/xxx. For
example, the`isis-1.0.0`tag on the origin will appear under`origin/isis-1.0.0.

If you don’t use git outside of Apache, you can add the --global flag so that the above settings apply
for all repos managed by git on your PC.

41

https://git-wip-us.apache.org/
https://git-wip-us.apache.org/

4.1.2. Getting help

Three commands of git that in particular worth knowing:

• git help command

will open the man page in your web browser

• git gui

will open up a basic GUI client to staging changes and making commits.

• gitk --all

will open the commit history for all branches. In particular, you should be able to see the local
master, which branch you are working on (the HEAD), and also the last known position of the
master branch from the central repo, called origin/master.

You might also want to explore using a freely available equivalent such as Atlassian SourceTree.

For further reading, see:

• git config man page

• .gitattributes man page

• .gitattributes git-scm.com docs

4.2. Installing Java
Apache Isis is compatible with Java 7 and Java 8. For every-day use, the framework is usually
compiled against Java 8.

Releases however are cut using Java 7, leveraging the link :http://maven.apache.org/plugins/maven-
toolchains-plugin/[Maven toolchains plugin]).

Therefore install either/both of Java 7 JDK and Java 8 JDK. Note that the JRE is not sufficient.


If you intend to contribute back patches to Apache Isis, note that while you can
develop using Java 8 within your IDE, be sure not to use any Java 8 APIs.

4.2.1. Configure Maven toolchains plugin

If you are a committer that will be performing releases of Apache Isis, then you must configure the
toolchains plugin so that releases can be built using Java 7.

This is done by placing the toolchains.xml file in ~/.m2 directory. Use the following file as a
template, adjusting paths for your platform:

42

https://www.sourcetreeapp.com/
http://www.kernel.org/pub/software/scm/git/docs/git-config.html
http://www.kernel.org/pub/software/scm/git/docs/gitattributes.html
http://git-scm.com/docs/gitattributes
http://maven.apache.org/plugins/maven-toolchains-plugin/

<?xml version="1.0" encoding="UTF8"?>
<toolchains>
 <toolchain>
 <type>jdk</type>
 <provides>
 <version>1.8</version>
 <vendor>oracle</vendor>
 </provides>
 <configuration>
 <jdkHome>/usr/lib64/jvm/jdk1.8.0_65</jdkHome>
 <!--
 <jdkHome>c:\Program Files\Java\jdk1.8.0_65</jdkHome>
 -->
 </configuration>
 </toolchain>
 <toolchain>
 <type>jdk</type>
 <provides>
 <version>1.7</version> ①
 <vendor>oracle</vendor>
 </provides>
 <configuration>
 <jdkHome>/usr/lib64/jvm/jdk1.7.0_79</jdkHome>
 <!--
 <jdkHome>c:\Program Files\Java\jdk1.7.0_79</jdkHome>
 -->
 </configuration>
 </toolchain>
</toolchains>

① The Apache Isis build is configured to search for the (1.7, oracle) JDK toolchain.

The Apache Isis parent pom.xml activates this plugin whenever the apache-release profile is enabled.

4.3. Installing Maven
Install Maven 3.0.x, downloadable here.

Set MAVEN_OPTS environment variable:

export MAVEN_OPTS="-Xms512m -Xmx1024m"


Previously we suggested -XX:MaxPermSize=256m, but this option has been removed
in Java 8. (As of 1.9.0, Apache Isis is built using Java 8 but with source and target
set to JDK 1.7).

43

http://maven.apache.org/download.html

4.4. Building all of Apache Isis
To build the source code from the command line, simply go to the root directory and type:

mvn clean install

The first time you do this, you’ll find it takes a while since Maven needs to download all of the
Apache Isis prerequisites.

Thereafter you can speed up the build by adding the -o (offline flag). To save more time still, we
also recommend that you build in parallel. (Per this blog post), you could also experiment with a
number of JDK parameters that we’ve found also speed up Maven:

export MAVEN_OPTS="-Xms512m -Xmx1024m -XX:+TieredCompilation -XX:TieredStopAtLevel=1"
mvn clean install -o -T1C

For the most part, though, you may want to rely on an IDE such as Eclipse to build the codebase for
you. Both Eclipse and Idea (12.0+) support incremental background compilation.

When using Eclipse, a Maven profile is configured such that Eclipse compiles to target-ide
directory rather than the usual target directory. You can therefore switch between Eclipse and
Maven command line without one interfering with the other.

4.5. Checking for Vulnerabilities
Apache Isis configures the OWASP dependency check Maven plugin to determine whether the
framework uses libraries that are known to have security vulnerabilities.

To check, run:

mvn org.owasp:dependency-check-maven:aggregate -Dowasp

This will generate a single report under target/dependency-check-report.html.

 The first time this runs can take 10~20 minutes to download the NVD data feeds.

To disable, either run in offline mode (add -o or --offline) or omit the owasp property.

4.6. Checking for use of internal JDK APIs
Apache Isis configures the jdeps maven plugin to check for any usage of internal JDK APIs. This is
in preparation for Java 9 module system (Jigsaw) which will prevent such usage of APIs.

To check, run:

44

http://zeroturnaround.com/rebellabs/your-maven-build-is-slow-speed-it-up/
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://jeremylong.github.io/DependencyCheck/dependency-check-maven/index.html
https://maven.apache.org/plugins-archives/maven-jdeps-plugin-3.0.0/

mvn clean install -Djdeps

This will fail the build on any module that currently uses an internal JDK API.

 At the time of writing the isis-core-schema module fails the build.

45

Chapter 5. AsciiDoc Documentation
Apache Isis' documentation (meaning the website and the users' guide, the reference guide and this
contributors' guide) is written using Asciidoc, specifically the Asciidoctor implementation.

The website and guides are created by running build tools (documented below) which create the
HTML version of the site and guides. You can therefore easily check the documentation before
raising a pull request (as a contributor) or publishing the site (if a committer).

Publishing is performed by copying the generated HTML to a different git repository (isis-site). This
is synced by ASF infrastructure over to isis.apache.org.

And to help write the Asciidoc text itself, we provide some templates.

5.1. Where to find the Docs
The (Asciidoc) source code can be found at adocs/documentation (relative to root). Online you’ll find
it cloned to github here.

5.2. Naming Conventions
For documents with inclusions, use '_' to separate out the logical hierarchy:

xxx-xxx/xxx-xxx.adoc
 _xxx-xxx_ppp-ppp.adoc
 _xxx-xxx_qqq-qqq.adoc
 _xxx-xxx_qqq-qqq_mmm-mmm.adoc
 _xxx-xxx_qqq-qqq_nnn-nnn.adoc

Any referenced images should be in subdirectories of the images directory:

xxx-xxx/images/.
 /ppp-ppp/.
 /qqq-qqq/.
 /mmm-mmm
 /nnn-nnn

And similarly any resources should be in the resources subdirectory:

xxx-xxx/resources/.
 ppp-ppp/.
 qqq-qqq/.
 /mmm-mmm/
 /nnn-nnn/

46

http://www.methods.co.nz/asciidoc/
asciidoctor.org/
https://git-wip-us.apache.org/repos/asf?p=isis-site.git
http://isis.apache.org
https://github.com/apache/isis/tree/master/adocs/documentation

5.3. Writing the docs
We highly recommend that you install the (IntelliJ) live templates for Asciidoctor, as described in
IDE templates. These provide a large number of helper templates.

An appendix lists all the templates available, demonstrating their intended usage and output.

5.4. Build and Review (using Maven)
To (re)build the documentation locally prior to release, change into the adocs/documentation
directory and use:

mvn clean compile

The site will be generated at target/site/index.html.

You could then use a web server such as Python’s SimpleHTTPServer to preview (so that all
Javascript works correctly). However, instead we recommend using instant preview, described
next.

5.5. Instant Rebuild (using Ruby)
The ruby script, monitor.rb emulates the mvn compile command, regenerating any changed
Asciidoctor files to the relevant target/site directory. Moreover if any included files are changed
then it rebuilds the parent (per the above naming convention).

5.5.1. One-time setup

To setup:

• download and install ruby 2.0.0, from http://rubyinstaller.org/downloads/

• download devkit for the Ruby 2.0 installation, also from http://rubyinstaller.org/downloads/.
Then follow the installation instructions on their wiki


We use Ruby 2.0 rather than 2.1 because the wdm gem (required to monitor the
filesystem if running on Windows) is not currently compatible with Ruby 2.1.

To download the required Ruby dependencies, use:

gem install bundler
bundle install

5.5.2. Instant Rebuild

To run, we typically just use:

47

http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
https://github.com/oneclick/rubyinstaller/wiki/Development-Kit

sh monitor.sh

This script simply runs mvn clean compile && ruby monitor.rb -b. The mvn command performs a
clean rebuild of the site, and then the ruby script monitors for any further changes under
src/main/asciidoc.

The script also starts up a web server on port 4000 so you can review results. If any .adoc changes,
then the appropriate HTML will be regenerated. And, if any new assets (CSS, images etc) are added,
they will be copied across. The -b flag passed through means that the script also starts a web
browser pointing at the newly generated docs.

The monitor.rb script has a couple of other options, use -h flag for usage:

ruby monitor.rb -h

which should print:

usage: monitor.rb [options]
 -p, --port port (default: 4000)
 -b, --browser launch browser
 -h, --help help

5.6. Publish procedure
Only Apache Isis committers can publish to isis.apache.org. We’ve decided to include these
procedures here here (rather than put them in the Committers' Guide), just to keep things together.

5.6.1. One-time setup

The generated site is published by copying into the content/ directory of the isis-site git repo. You
therefore need to check this out this repo.

The procedure assumes that two git repos (for isis itself and for isis-site) are checked out into the
same parent directory, eg:

/APACHE/
 isis/ # checkout of isis.git
 adocs/
 documentation/
 README.adoc # this file you are reading right now
 ...
 isis-site/ # checkout of isis-site.git
 content/ # the published website

If this isn’t the case, then it is possible to override the relative directory by passing in a system

48

http://isis.apache.org
cgcom.pdf
https://git-wip-us.apache.org/repos/asf/isis-site.git
https://git-wip-us.apache.org/repos/asf/isis.git

property to the mvn goal; see below.

You also need to know that ASF’s publishing script work from the 'asf-site' branch, NOT from the
'master' branch. Therefore, in the isis.git repo site:

git checkout asf-site

5.6.2. Publishing

Back in the adocs/documentation directory of the main isis-git.repo, to copy the generated
documents to the isis-site.git repo, run:

mvn clean package

This deletes the entire content of contents, and replaces with the content under target/site. It also
fixes up line endings, standardizing on unix-style LFs.


If you have checked out the isis-site.git repo into some other directory (relative
to isis.site.git), then this can be overridden by specifying `-Disis-

site.dir=… when calling mvn.

To copy and to also commit the generated documents to the isis-site.git repo , run:

sh publish.sh "ISIS-nnnn: a custom commit message"

Behind the scenes this just calls mvn clean install -Dmessage=….

Pushing the commits (in the isis-site.git directory, of course) will publishing the changes:

git push

Double check at isis.apache.org.

49

http://isis.apache.org

Chapter 6. Contributing
This page explains how you can contribute to Apache Isis. You’ll probably also want set up your IDE
and learn how to build Apache Isis.

Thanks for considering to help out, your contributions are appreciated!

6.1. Recommended Workflow (github)
Apache Isis' source code is hosted in an Apache git repo (https, http), with a clone on github (https,
or ssh: git@github.com:apache/isis.git.

As you might imagine, only committers are permitted to push changes to the central git repo. As a
contributor, we recommend that you fork the apache/isis repo in github, and then use your fork as
a way of publishing your patches for the Apache Isis committers to apply.

The diagram below illustrates the process:

That is:

1. as a one-time activity, you fork the github.com/apache/isis repo into your own fork on
github.com

2. as a one-time activity, you clone your fork to your local computer

3. you set the github.com/apache/isis as your upstream branch; this will allow you to keep your
local clone up-to-date with new commits

50

https://git-wip-us.apache.org/repos/asf/isis.git
http://git-wip-us.apache.org/repos/asf/isis.git
https://github.com/apache/isis.git
https://github.com/apache/isis.git
images/contributing/git-workflow.png
https://github.com/apache/isis.git
https://github.com/apache/isis.git

• note the asymmetry here: the upstream repo (the Apache github repo) is not the same as the
origin repo (your fork).

4. you work on your changes locally; when done, you push them to your github fork

5. to contribute back a change, raise a JIRA ticket, and ensure your commit message is in the form:
ISIS-nnnn: … so that changes can be tracked (more discussion on this point below). In any case,
before you decide to start hacking with Apache Isis, it’s always worth creating a ticket in JIRA
and then have a discussion about it on the mailing lists.

6. Use github to raise a pull request for your feature

7. An Apache Isis committer will review your change, and apply it if suitable.

6.2. Alternative Workflow (JIRA patches)
As an alternative, you may decide to clone directly from github.com/apache/isis rather than create
your own fork:

In this case your upstream repo is the same as your origin repo, which might seem more
straightforward. On the other hand, if you go this route then you’ll need create patches locally and
attach them to the JIRA ticket.

For the Apache Isis committers it really doesn’t matter which route you take, so go with whatever’s
most comfortable.

51

https://issues.apache.org/jira/browse/ISIS
http://isis.apache.org/support.html
https://help.github.com/articles/using-pull-requests/
https://github.com/apache/isis.git
images/contributing/git-workflow-2.png

6.3. Setting up your fork/clone
If you choose to create your own fork then you’ll need an account on github.com. You then fork
simply by pressing the "Fork" button:

An account isn’t needed if you just clone straight from the github.com/apache/isis.

Whether you’ve forked or not, you then need to clone the repo onto your computer. Github makes
this very easy to do:

• for Windows users, we suggest you use github’s 'Clone in Windows' feature

• for Mac/Linux users, create a clone from the command line:

Again, the info is easily found in the github page:

If you’ve created your own fork, then you need to add the upstream remote to the
github.com/apache/isis. This remote is traditionally called upstream. You should then arrange for
your master branch to track the upstream/master remote branch:

If you didn’t create your own fork, you can omit the above step. Either way around, you can now
fetch new commits using simply:

git fetch

For more info on tracking branches here and here.

6.4. Commit messages
Although with git your commits are always performed on your local repo, those commit messages
become public when the patch is applied by an Apache Isis committer. You should take time to
write a meaningful commit message that helps explain what the patch refers to; if you don’t then
there’s a chance that your patch may be rejected and not applied. No-one likes hard work to go to
waste!

52

https://github.com
images/contributing/github-forking.png
http://github.com/apache/isis
images/contributing/github-cloning.png
https://github.com/apache/isis
http://git-scm.com/book/en/Git-Branching-Remote-Branches
http://gitready.com/beginner/2009/03/09/remote-tracking-branches.html

We therefore recommend that your commit messages are as follows [1]:

ISIS-999: Make the example in CONTRIBUTING imperative and concrete

Without this patch applied the example commit message in the CONTRIBUTING
document is not a concrete example. This is a problem because the
contributor is left to imagine what the commit message should look like
based on a description rather than an example. This patch fixes the
problem by making the example concrete and imperative.

The first line is a real life imperative statement with a ticket number
from our issue tracker. The body describes the behavior without the patch,
why this is a problem, and how the patch fixes the problem when applied.

Once your git repo is setup, the next thing you’ll most likely want to do is to setup your
development environment. See here for more details.

6.5. Creating the patch file
If you are working without a github fork of Apache Isis, then you can create the patches from your
own local git repository.

As per this stackoverflow question, create the patch using git format-patch:

git format-patch -10 HEAD --stdout > 0001-last-10-commits.patch

Here -10 is the last 10 commits you have done. You need to change that integer according to the
commits you need to apply into the patch.

6.6. Sample Contribution Workflow
Assuming you’re development environment is all setup, let’s walk through how you might make
contribute a patch. In this example, suppose that you’ve decided to work on JIRA ticket #123, an
enhancement to support Blob/Clob datatypes.

6.6.1. Update your master branch

The first thing to do is to make sure your local clone is up-to-date. We do this by retrieving new
commits from upstream repo and then merging them as a fast-forward into your local branch.

Irrespective of whether you are using a github fork, the upstream for your local master branch will
be tracking the appropriate remote’s master branch. So n either case, the same commands work:

Alternatively, you can combine the git fetch and git merge and just use git pull: <pre> git
checkout master git pull –ff-only </pre>

If the merge or pull fails, it means that you must have made commits and there have been changes

53

development-environment.html
http://stackoverflow.com/questions/6658313/generate-a-git-patch-for-a-specific-commit

meanwhile on the remote master’s branch. You can use `gitk --all to confirm. If this fails, see our
git cookbook page for a procedure to retrospectively sort out this situation.

6.6.2. Create a topic branch

We recommend you name topic branches by the JIRA ticket, ie <tt>ISIS-nnn-description</tt>. So let’s
create a new branch based off master and call it "ISIS-123-blobs"

You can confirm the branch is there and is your new HEAD using either gitk --all. Alternatively, use
the command line:

$ git checkout -b ISIS-123-blobs

The command line prompt should also indicate you are on a branch, isolated from any changes that
might happen on the master branch.

6.6.3. Make File Changes and Commit

Next, make changes to your files using the usual commands (see also our git cookbook section):

• git add

• git mv

• git rm

• git commit

• git status

and so on.

Continue this way until happy with the change. Remember to run all your tests on the topic branch
(including a full mvn clean install).

6.6.4. Rebasing with master

Before you can share your change, you should rebase (in other words replay) your changes on top
of the master branch.

The first thing to do is to pull down any changes made in upstream remote’s master since you
started your topic branch:

These are the same commands that you would have run before you created your topic branch. If
you use gitk --all, there’s a good chance that new commits have come in.

Next, we reintegrate our topic branch by rebasing onto master: <pre> git checkout ISIS-123-blobs git
rebase master </pre>

This takes all of the commits in your branch, and applies them on top of the new master branch.
When your change is eventually integrated back in, it will result in a nice clear linear history on the
public repo.

54

git-cookbook.html

If the rebase fails because of a conflict, then you’ll be dumped into REBASE mode. Edit the file that
has the conflict, and make the appropriate edits. Once done:

Once the rebase has completed, re-run your tests to confirm that everything is still good.

6.6.5. Raising a pull request

If you have your own fork, you can now simply push the changes you’ve made locally to your fork:

This will create a corresponding branch in the remote github repo. If you use gitk --all, you’ll also
see a remotes/origin/ISIS-123-blobs branch.

Then, use github to raise a pull request. Pull requests sent to the Apache GitHub repositories will
forward a pull request e-mail to the dev mailing list. You’ll probably want to sign up to the dev
mailing list first before issuing your first pull request (though that isn’t mandatory).

The process to raise the pull request, broadly speaking:

• Open a web browser to your github fork of isis

• Select your topic branch (pushed in the previous step) so that the pull request references the
topic branch.

• Click the Pull Request button.

• Check that the Apache Isis mailing list email came through.

6.7. If your pull request is accepted
To double check that your pull request is accepted, update your master branch from the upstream
remote:

You can then use gitk --all (or git log if you prefer the command line) to check your contribution
has been added.

You can now delete your topic branch and remove the branch in your github:

Finally, you might want to push the latest changes in master back up to your github fork. If so, use:

6.7.1. If your pull request is rejected

If your pull request is rejected, then you’ll need to update your branch from the main repository
and then address the rejection reason.

You’ll probably also want to remove the remote branch on github:

git push origin –delete ISIS-123-blobs

… and continue as before until you are ready to resubmit your change.

[1] inspiration for the recommended commit format comes from the puppet project’s contributing

55

https://help.github.com/articles/using-pull-requests/
../support.html
https://github.com/puppetlabs/puppet
https://github.com/puppetlabs/puppet/blob/master/CONTRIBUTING.md

page.

56

Chapter 7. Appendix: Git Cookbook
This appendix describes the commands often used while working with git. In addition to these
basic commands, please make sure you have read:

• building Apache Isis

• Contributing

• Git policy

7.1. Modifying existing files
To modify existing files:

git add filename
git commit -m "ISIS-nnn: yada yada"

The git add command adds the changes to the file(s) to the git index (aka staging area). If you were
to make subsequent changes to the file these would not be committed.

The git commit takes all the staged changes and commits them locally. Note that these changes are
not shared public with Apache Isis' central git repo.

You can combine these two commands using -am flag to git commit:

git commit -am "ISIS-nnn: yada yada"

7.2. Adding new files
To add a new file:

git add .
git commit -m "ISIS-nnn: yada yada"

Note that this sequence of commands is identical to modifying an existing file. However, it isn’t
possible to combine the two steps using git commit -am; the git add is always needed when adding
new files to the repo.

7.3. Deleting files
To delete a file:

57

git rm filename
git commit -m "ISIS-nnn: yada yada"

7.4. Renaming or moving files
To rename or move a file:

git mv <i>filename</i> <i>newfilename</i>
git commit -m "ISIS-nnn: yada yada"

7.5. Common Workflows
The contributing page describes the workflow for non-committers. The Git policy page describes a
workflow for Apache Isis committers.

7.6. Backing up a local branch
If committing to a local branch, the changes are still just that: local, and run risk of a disk failure or
other disaster.

To create a new, similarly named branch on the central repo, use:

git push -u origin <i>branchname</i>

Using gitk --all will show you this new branch, named origin/branchname.

Thereafter, you can push subsequent commits using simply:

git push

Doing this also allows others to collaborate on this branch, just as they would for master.

When, eventually, you have reintegrated this branch, you can delete the remote branch using:

git push origin --delete <i>branchname</i>

For more detail, see these blogs/posts here and here.

7.7. Quick change: stashing changes
If you are working on something but are not ready to commit, then use:

58

cgcom.pdf#_cgcom_policies_git-policy
http://www.mariopareja.com/blog/archive/2010/01/11/how-to-push-a-new-local-branch-to-a-remote.aspx
http://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-both-locally-and-in-github

git stash

If you use gitk --all then you’ll see new commits are made that hold the current state of your
working directory and staging area.

You can then, for example, pull down the latest changes using git pull --rebase (see above).

To reapply your stash, then use:

git stash pop

Note that stashing works even if switching branches

7.8. Ignoring files
Put file patterns into .gitignore. There is one at the root of the git repo, but they can additionally
appear in subdirectories (the results are cumulative).

See also:

• github’s help page

• man page

7.9. More advanced use cases

7.9.1. If accidentally push to remote

Suppose you committed to master, and then pushed the change, and then decided that you didn’t
intend to do that:

C1 - C2 - C3 - C4 - C5 - C6 - C7
 ^
 master
 ^
 origin/master

To go back to an earlier commit, first we wind back the local master:

git reset --hard C5

where C5 is the long sha-id for that commit.

This gets us to:

59

https://help.github.com/articles/ignoring-files
http://www.kernel.org/pub/software/scm/git/docs/gitignore.html

C1 - C2 - C3 - C4 - C5 - C6 - C7
 ^
 master
 ^
 origin/master

Then, do a force push:

git push origin master --force

If this doesn’t work, it may be that the remote repo has disabled this feature. There are other hacks
to get around this, see for example here.

7.10. If you’ve accidentally worked on master branch
If at any time the git pull from your upstream fails, it most likely means that you must have made
commits on the master branch. You can use gitk --all to confirm; at some point in time both master
and origin\master will have a common ancestor.

You can retrospectively create a topic branch for the work you’ve accidentally done on master.

First, create a branch for your current commit:

git branch <i>newbranch</i>

Next, make sure you have no outstanding edits. If you do, you should commit them or stash them:

git stash

Finally, locate the shaId of the commit you want to roll back to (easily obtained in gitk -all), and
wind master branch back to that commit:

git checkout master
git reset --hard <i>shaId</i> # move master branch shaId of common ancestor

7.11. If you’ve forgotten to prefix your commits (but
not pushed)
One of our committers, Alexander Krasnukhin, has put together some git scripts to help his
workflow. Using one of these, git prefix, you can just commit with proper message without
bothering about prefix and add prefix only in the end before the final push.

For example, to prefix all not yet prefixed commits master..isis/666 with ISIS-666 prefix, use:

60

http://stackoverflow.com/questions/1377845/git-reset-hard-and-a-remote-repository

git prefix ISIS-666 master..isis/666

You can grab this utility, and others, from this repo.

61

https://github.com/themalkolm/git-boots

Chapter 8. Appendix: Asciidoc Templates
This appendix lists the (IntelliJ) live templates available for writing documentation using Asciidoc.
Instructions for installing the templates can be found here.

In the examples below the text xxx, yyy, zzz are correspond to template variables (ie placeholders).

8.1. Callouts
The Asciidoctor terminology is an "admonition".

Abbrev. Produces Example

adadmimporta
nt

[IMPORTANT]
====
xxx
====

[IMPORTANT] ==== xxx
====

adadmnote [NOTE]
====
xxx
====

[NOTE] ==== xxx ====

adadmtip [TIP]
====
xxx
====

[TIP] ==== xxx ====

adadmwarning [WARNING]
====
xxx
====

[WARNING] ==== xxx ====

8.2. TODO notes
Add as a placeholder for documentation still to be written or which is work-in-progress.

Abbrev. Produces Example

adtodo <pre>NOTE: TODO</pre> NOTE: TODO

adwip <pre>NOTE: WIP - xxx</pre> where: *
<code>xxx</code> is additional explanatory text

NOTE: WIP - cool new
feature

8.3. Xref to Guides
Cross-references (links) to the various guides

62

Abbrev. Produces Example

adcgcom <pre>xref:cgcom.adoc#xxx[ttt]</pre> a hyperlink to a
bookmark within the committers' guide, where: *
<code>xxx</code> is the bookmark’s anchor *
<code>ttt</code> is the text to display as the hyperlink
for example: <pre>xref:dg.adoc#_cgcom_cutting-a-
release[Cutting a release]</pre>

addg

<pre>xref:dg
.adoc#xxx[ttt
]</pre> a
hyperlink to
a bookmark
within the
developers'
guide,
where: *
<code>xxx</
code> is the
bookmark&#
8217;s
anchor *
<code>ttt</co
de> is the
text to
display as
the
hyperlink
for example:
<pre>xref:dg
.adoc#_dg_as
ciidoc-
templates[As
ciidoc
templates]</
pre>

Asciidoc templates adrgant

63

Abbrev. Produces Example

<pre>xref:rg
ant.adoc#xx
x[ttt]</pre> a
hyperlink to
a bookmark
within the
reference
guide for
annotations,
where: *
<code>xxx</
code> is the
bookmark *
<code>ttt</co
de> is the
text to
display as
the
hyperlink
for example:
<pre>xref:rg
ant.adoc#_rg
ant_aaa_mai
n[Core
annotations]
</pre>

Core annotations adrgcfg

64

rgant.pdf#_rgant_aaa_main

Abbrev. Produces Example

<pre>xref:rg
cfg.adoc#xxx
[ttt]</pre> a
hyperlink to
a bookmark
within the
reference
guide for
configuratio
n properties
guide,
where: *
<code>xxx</
code> is the
bookmark *
<code>ttt</co
de> is the
text to
display as
the
hyperlink
for example:
<pre>xref:rg
cfg.adoc#_rg
cfg_configuri
ng-
core[Configu
ring
Core]</pre>

Configuring Core adrgcms

65

rgcfg.pdf#_rgcfg_configuring-core

Abbrev. Produces Example

<pre>xref:rg
cms.adoc#xx
x[ttt]</pre> a
hyperlink to
a bookmark
within the
reference
guide for
classes,
methods and
schema,
where: *
<code>xxx</
code> is the
bookmark *
<code>ttt</co
de> is the
text to
display as
the
hyperlink
for example:
<pre>xref:rg
cms.adoc#_r
gcms_classes
_super_Abstr
actService[`
AbstractServ
ice`]</pre>

AbstractService adrgsvc

66

rgcms.pdf#_rgcms_classes_super_AbstractService

Abbrev. Produces Example

<pre>xref:rg
svc.adoc#xxx
[ttt]</pre> a
hyperlink to
a bookmark
within the
reference
guide for
domain
services,
where: *
<code>xxx</
code> is the
bookmark *
<code>ttt</co
de> is the
text to
display as
the
hyperlink
for example:
<pre>xref:rg
svc.adoc#_rg
cms_classes_
AppManifest
-bootstrappi
ng[`AppMan
ifest`
bootstrappin
g]</pre>

AppManifest bootstrapping adrgmvn

67

xref:rgsvc.pdf#_rgcms_classes_AppManifest-bootstrapping
xref:rgsvc.pdf#_rgcms_classes_AppManifest-bootstrapping

Abbrev. Produces Example

<pre>xref:rg
mvn.adoc#x
xx[ttt]</pre>
a hyperlink
to a
bookmark
within the
reference
guide for the
maven
plugin,
where: *
<code>xxx</
code> is the
bookmark *
<code>ttt</co
de> is the
text to
display as
the
hyperlink
for example:
<pre>xref:rg
mvn.adoc#_r
gmvn_valida
te[validate
goal]</pre>

validate goal adrgna

68

rgmvn.pdf#_rgmvn_validate

Abbrev. Produces Example

<pre>xref:rg
ant.adoc#_rg
ant-
xxx[`@xxx`
</pre>]
a hyperlink
to the "man
page" for an
annotation
within the
reference
guide for
annotations,
where: *
<code>xxx</
code> is the
annotation
type (eg
<code>@Acti
on</code>)
for example:
<pre>xref:rg
ant.adoc#_rg
ant-
Action[`@Ac
tion`]</pre>

@Action adrgnt

69

rgant.pdf#_rgant-Action

Abbrev. Produces Example

<pre>xref:rg
ant.adoc#_rg
ant-
xxx_ttt[`@xx
x#ttt()`</p
re>] a
hyperlink to
the "man
page" for the
specific
attribute
(field) of an
annotation
within the
reference
guide for
annotations,
where: *
<code>xxx</
code> is the
annotation
type (eg
<code>@Acti
on</code>) *
<code>ttt</co
de> is the
attribute (eg
<code>@sem
antics</code
>) for
example:
<pre>xref:rg
ant.adoc#_rg
ant-
Action_sema
ntics[`@Acti
on#semantic
s()`]</pre>

@Action#semantics() adrgsa

70

rgant.pdf#_rgant-Action_semantics

Abbrev. Produces Example

<pre></pre>
a hyperlink
to the "man
page" for an
(API) domain
service
within the
reference
guide for
domain
services,
where: *
<code>xxx</
code> is the
domain
service (eg
<code>Doma
inObjectCont
ainer</code>
) for
example:
<pre>xref:rg
svc.adoc#_rg
svc_api_Dom
ainObjectCo
ntainer[`Do
mainObjectC
ontainer`]</
pre>

DomainObjectContainer adrgss

71

rgsvc.pdf#_rgsvc_api_DomainObjectContainer

Abbrev. Produces Example

<pre></pre>
a hyperlink
to the "man
page" for an
(SPI) domain
service
within the
reference
guide for
domain
services,
where: *
<code>xxx</
code> is the
domain
service (eg
<code>Conte
ntMappingSe
rvice</code>
) for
example:
<pre>xref:rg
svc.adoc#_rg
svc_spi_Cont
entMappingS
ervice[`Cont
entMappingS
ervice`]</pr
e>

ContentMappingService adugfun

72

rgsvc.pdf#_rgsvc_spi_ContentMappingService

Abbrev. Produces Example

<pre>xref:ug
fun.adoc#xx
x[ttt]</pre> a
hyperlink to
a bookmark
within the
fundamental
s users'
guide,
where: *
<code>xxx</
code> is the
bookmark&#
8217;s
anchor *
<code>ttt</co
de> is the
text to
display as
the
hyperlink
for example:
<pre>xref:ug
fun.adoc#_u
gfun_core-
concepts[Cor
e
concepts]</p
re>

Core concepts adugvw

73

ugfun.pdf#_ugfun_core-concepts

Abbrev. Produces Example

<pre>xref:ug
vw.adoc#xxx
[ttt]</pre> A
hyperlink to
a bookmark
within the
Wicket
viewer
guide,
where: *
<code>xxx</
code> is the
bookmark&#
8217;s
anchor *
<code>ttt</co
de> is the
text to
display as
the
hyperlink.
for example:
<pre>xref:ug
vw.adoc#_ug
vw_customis
ation[Custo
misation]</p
re>

Customisation adugvro

74

ugvw.pdf#_ugvw_customisation

Abbrev. Produces Example

<pre>xref:ug
vro.adoc#xx
x[ttt]</pre>
A hyperlink
to a
bookmark
within the
Restful
Objects
viewer
guide,
where: *
<code>xxx</
code> is the
bookmark&#
8217;s
anchor *
<code>ttt</co
de> is the
text to
display as
the
hyperlink.
for example:
<pre>xref:ug
vro.adoc#_ug
vro_ro-
spec[Restful
Objects
specification
]</pre>

RestfulObjects specification adugsec

75

ugvro.pdf#_ugvro_ro-spec

Abbrev. Produces Example

<pre>xref:ug
sec.adoc#xxx
[ttt]</pre> A
hyperlink to
a bookmark
within the
Secrurity
guide,
where: *
<code>xxx</
code> is the
bookmark&#
8217;s
anchor *
<code>ttt</co
de> is the
text to
display as
the
hyperlink.
for example:
<pre>xref:ug
sec.adoc#_ug
sec_shiro-
caching[Cac
hing and
other Shiro
Features]</p
re>

Caching and other Shiro Features adugtst

76

ugsec.pdf#_ugsec_shiro-caching

Abbrev. Produces Example

<pre>xref:ug
tst.adoc#xxx[
ttt]</pre> A
hyperlink to
a bookmark
within the
Testing
guide,
where: *
<code>xxx</
code> is the
bookmark&#
8217;s
anchor *
<code>ttt</co
de> is the
text to
display as
the
hyperlink.
for example:
<pre>xref:ug
tst.adoc#_ugt
st_bdd-spec-
support[BDD
Spec
Support]</pr
e>

BDD Spec Support adugbtb

8.4. Link to Isis Addons
Links to (non-ASF) Isis Addons

Abbrev. Produces Example

adlinkaddons <pre>(non-ASF) link:http://isisaddons.org[Isis
Addons]</pre> link to the Isis Addons website.

(non-ASF) Isis Addons

adlinkaddons
app

<pre>(non-ASF) http://github.com/isisaddons/isis-app-
xxx[Isis addons' xxx</pre>] link to the github repo
for an example app from the Isis addons; where: *
<code>xxx</code> is the name of the example app
being linked to for example: <pre>(non-ASF)
http://github.com/isisaddons/isis-app-todoapp[Isis
addons' todoapp]</pre>

(non-ASF) Isis addons'
todoapp

77

ugtst.pdf#_ugtst_bdd-spec-support
http://isisaddons.org
http://isisaddons.org
http://github.com/isisaddons/isis-app-todoapp
http://github.com/isisaddons/isis-app-todoapp

Abbrev. Produces Example

adlinkaddons
module

<pre></pre> link to the github repo for a module from
the Isis addons; where: * <code>xxx</code> is the name
of the module being linked to for example: <pre>(non-
ASF) http://github.com/isisaddons/isis-module-
security[Isis addons' security] module</pre>

(non-ASF) Isis addons'
security module

adlinkaddons
wicket

<pre></pre> link to the github repo for a wicket UI
component from the Isis addons; where: *
<code>xxx</code> is the name of the wicket UI
component being linked to for example: <pre>(non-
ASF) http://github.com/isisaddons/isis-wicket-gmap3[Isis
addons' gmap3] wicket extension</pre>

(non-ASF) Isis addons'
gmap3 wicket extension

8.5. Source code

Abbrev. Produces Example

adsrcjava [source,java]

xxx
---- where: * xxx is the source code snippet.

[source,java] ---- public
class Foo { … } ----

adsrcjavac as for adsrcjava, but with a caption above

adsrcjavascr
ipt

[source,javascript]

xxx
---- where: * xxx is the source code snippet.

[source,javascript] ----
$(document).ready(functio
n() { 	… }); ----

adsrcjavascr
iptc

as for adsrcjavascript, but with a caption above

adsrcother [source,nnn]

xxx
---- where: * nnn is the programming language * xxx is
the source code snippet.

adsrcotherc as for adsrcother, but with a caption above

adsrcxml [source,javascript]

xxx
---- where: * xxx is the source code snippet.

[source,xml] ---- <html>
<title> hello world!
</title> </html> ----

adsrcxmlc as for adsrcxml, but with a caption above

8.6. Images

78

http://github.com/isisaddons/isis-module-security
http://github.com/isisaddons/isis-module-security
http://github.com/isisaddons/isis-wicket-gmap3
http://github.com/isisaddons/isis-wicket-gmap3

Abbrev. Produces Example

adimgfile <pre>image::{_imagesdir}xxx/yyy.png[width="WWWpx
",link="{_imagesdir}xxx/yyy.png"]</pre> embeds
specified image, where: * <code>xxx</code> is the
subdirectory under the <code>images/</code> directory
* <code>yyy</code> is the image * <code>WWW</code>
is the width, in pixels. for example:
<pre>image::{_imagesdir}wicket-viewer/layouts/estatio-
Lease.png[width="300px",link="{_imagesdir}wicket-
viewer/layouts/estatio-Lease.png"]</pre>

image::images/wicket-
viewer/layouts/estatio-
Lease.png[width="300px",li
nk="images/wicket-
viewer/layouts/estatio-
Lease.png"]

adimgfilec as for adimgfile, but with a caption above

adimgurl <pre>image::xxx[width="WWWpx",link="xxx"]</pre>
embeds image from specified URL, where: *
<code>xxx</code> is the URL to the image *
<code>WWW</code> is the width, in pixels.

adimgurlc as for adimgurl, but with a caption above

8.7. YouTube (screencasts)
Embedded youtube screencasts. (Don’t use these in guides, as they cannot be rendered as PDF).

Abbrev. Produces Example

adyoutube <pre>video::xxx[youtube,width="WWWpx",height="HH
Hpx"]</pre> where: * <code>xxx</code> is the youtube
reference * <code>WWW</code> is the width, in pixels
* <code>HHH</code> is the height, in pixels for
example:
<pre>video::bj8735nBRR4[youtube,width="210px",heig
ht="118px"] </pre>

video::bj8735nBRR4[youtu
be,width="210px",height="
118px"]

adyoutubec as for youtube, but with a caption above

8.8. Tables

Abbrev. Produces Example

adtbl3 Table with 3 columns, 3 rows.

8.9. Misc.

Abbrev. Produces Example

adai <pre>Apache Isis</pre>
 That is, the literal text
"Apache Isis".

Apache Isis

79

Abbrev. Produces Example

adlink <pre>link:xxx[ttt]</pre> , where: * <code>xxx</code> is
* <code>ttt</code> is the text to display as the hyperlink
for example: <pre>link:http://isis.apache.org[Apache
Isis website]</pre>

Apache Isis website

adanchany <pre>= anchor:[xxx]</pre> defines an inline anchor to
any heading, where: * <code>xxx</code> is the anchor
text. For example: <pre>= anchor:[_ugfun_i18n]
Internationalization</pre> An alternative (more
commonly used in our documentation) is to use the
<code>[[…​]]</code> directly above the
heading: <pre>[[_ugfun_i18n]] =
Internationalization</pre>

adxrefany <pre>xref:[xxx]</pre> cross-reference to any
document/anchor, where: * <code>xxx</code> is the
fully qualified document with optional anchor

adfootnote <pre>.footnote:[]</pre> defines a footnote . [1: this is a footnote]

80

http://isis.apache.org

Chapter 9. Appendix: Project Lombok
Project Lombok is an open source project to reduce the amount of boilerplate in your code.

For example, rather than write:

private String name;
public String getName() {
 return name;
}
public void setName(String name) {
 this.name = name;
}

you can instead write simply:

@Getter @Setter
private String name;

Under the covers it is implemented as an annotation processor; it basically hooks into the Java
compiler so that it can emit additional bytecode (eg for the getter and setter). See here for details of
setting up in IntelliJ (Eclipse has very similar support).

Apache Isis supports Project Lombok, in that the annotations that would normally be placed on the
getter (namely Property, @PropertyLayout, @Collection, @CollectionLayout and @MemberOrder) can be
placed on the field instead.

There are plugins for Lombok for maven; it’s just a matter of adding the required dependency. To
compile the code within your IDE (eg so that its compiler "knows" that there is, actually, a getter
and setter) will require an Lombok plugin appropriate to that IDE. See the Lombok download page
for more information.

9.1. Future thoughts
In the future we might extend/fork Lombok so that it understands Isis' own annotations (ie
@Property and @Collection) rather than Lombok’s own @Getter and `@Setter.

It might also be possible to use Lombok to generate the domain event classes for each member.

81

https://projectlombok.org/
https://projectlombok.org/
rgant.pdf#_rgant-Property
rgant.pdf#_rgant-PropertyLayout
rgant.pdf#_rgant-Collection
rgant.pdf#_rgant-CollectionLayout
rgant.pdf#_rgant-MemberOrder
https://projectlombok.org/download.html
rgant.pdf#_rgant-Property
rgant.pdf#_rgant-Collection

Chapter 10. Appendix: AgileJ


This material does not constitute an endorsement; AgileJ Structure Views is not
affiliated to Apache Software Foundation in any way.

AgileJ Structure Views is a commercial product to reverse engineer and visualize Java classes from
source code.

The key to using the tool is in developing a suitable filter script, a DSL. You can use the following
script as a starting point for visualizing Apache Isis domain models:

// use CTRL+SPACE for completion suggestions
hide all fields
hide setter methods
hide private methods
hide methods named compareTo
hide methods named toString
hide methods named inject*
hide methods named disable*
hide methods named default*
hide methods named hide*
hide methods named autoComplete*
hide methods named choices*
hide methods named title
hide methods named iconName
hide methods named validate*
hide methods named modify*
hide protected methods
hide types annotated as DomainService
hide types named Constants
hide types named InvoicingInterval
hide enums
hide constructors
hide inner types named *Event
hide inner types named *Functions
hide inner types named *Predicates
show getter methods in green
show methods annotated as Programmatic in orange
show methods annotated as Action in largest
hide dependency lines
hide call lines
hide method lines

For more information on AgileJ, see Paul Wells' 8-part tutorial series on Youtube; the first can be
found here (view the "show more" comments to click through to other parts).

82

http://www.agilej.com/
https://www.youtube.com/watch?v=YrZQ7lMSsH0

	Developers' Guide
	Table of Contents
	Chapter 1. Developers' Guide
	1.1. Other Guides

	Chapter 2. Using an IDE
	2.1. Developing using IntelliJ IDEA
	2.2. Developing using Eclipse

	Chapter 3. Code and File Templates
	3.1. Download
	3.2. Installation
	3.3. Usage

	Chapter 4. Building Apache Isis
	4.1. Git
	4.2. Installing Java
	4.3. Installing Maven
	4.4. Building all of Apache Isis
	4.5. Checking for Vulnerabilities
	4.6. Checking for use of internal JDK APIs

	Chapter 5. AsciiDoc Documentation
	5.1. Where to find the Docs
	5.2. Naming Conventions
	5.3. Writing the docs
	5.4. Build and Review (using Maven)
	5.5. Instant Rebuild (using Ruby)
	5.6. Publish procedure

	Chapter 6. Contributing
	6.1. Recommended Workflow (github)
	6.2. Alternative Workflow (JIRA patches)
	6.3. Setting up your fork/clone
	6.4. Commit messages
	6.5. Creating the patch file
	6.6. Sample Contribution Workflow
	6.7. If your pull request is accepted

	Chapter 7. Appendix: Git Cookbook
	7.1. Modifying existing files
	7.2. Adding new files
	7.3. Deleting files
	7.4. Renaming or moving files
	7.5. Common Workflows
	7.6. Backing up a local branch
	7.7. Quick change: stashing changes
	7.8. Ignoring files
	7.9. More advanced use cases
	7.10. If you’ve accidentally worked on master branch
	7.11. If you’ve forgotten to prefix your commits (but not pushed)

	Chapter 8. Appendix: Asciidoc Templates
	8.1. Callouts
	8.2. TODO notes
	8.3. Xref to Guides
	8.4. Link to Isis Addons
	8.5. Source code
	8.6. Images
	8.7. YouTube (screencasts)
	8.8. Tables
	8.9. Misc.

	Chapter 9. Appendix: Project Lombok
	9.1. Future thoughts

	Chapter 10. Appendix: AgileJ

